
An Improved Classification Scheme for Chromosomes with Missing

Data

Enea Poletti, Alfredo Ruggeri, and Enrico Grisan

Abstract— Karyotyping, or the automatic classification of
human chromosomes, is mostly based on the analysis of the
chromosome specific banding pattern. Unfortunately, the most
informative phases of the cell division cycle are composed of
long chromosomes that easily overlap: the involved banding
pattern information is corrupted, resulting in a drastic increase
of the classification error.

Assuming the availability of a probabilistic classifier, the
improvement of the classification of chromosomes with cor-
rupted data would require the additional estimation of the joint
probability density of the observed and missing data for each
chromosome class. Given the number of classes, the possible po-
sition and extension of the corrupted data within a chromosome,
and the dimensionality of the feature space, a reliable estimation
would need an impossible number of training samples. We
chose to circumvent the estimation problem by developing a
statistical generative model of the pattern of each class, so that
the corrupted part can be substituted with a partial pattern
synthetically generated from the model. This allows to obtain a
Monte Carlo estimate of the maximum a posteriori probability
for the class given the observation and the missing data, which
reduces to a simple voting scheme if the a priori probability for
each class is equal. Moreover, this Monte Carlo classification is
superior to the voting scheme based on the simple imputation
of the classes mean to the missing data.

I. INTRODUCTION

Karyotype analysis is an important screening and diagnos-

tic procedure routinely performed in clinical cytogenetic labs.

Chromosome are first stained with a fluorescent dye, and

then imaged through a microscope for subsequent analysis

and classification. Each chromosome in the image has to be

identified and assigned to one of 24 classes [1] (Fig. 1).

The aim of an automatic karyotyping system is to assign

each chromosome to one of the 24 possible classes, by

exploiting chromosome features extracted from the image.

One of the most important feature is the density profile [2],

[3] that is a representation of the banding pattern of each

chromosome class (Fig. 2b), and that can be obtained only

after the axis of the chromosome has been estimated (Fig. 2a)

[4], [2], [3].

All the previous work dealing with the classification of

chromosome disregard the fact that the most informative

(in terms of banding pattern) phases of the division cycle

are composed of long chromosomes that easily overlap

(Fig. 3a): the number of overlaps reported varies between

4% [5] and 11% [6]. Within the overlapping region, the

information extracted is the superposition of the banding

pattern belonging to the different chromosomes involved, and
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often the resulting hyper-fluorescence saturates the image

intensity (Fig. 3). These effects have a twofold consequence:

the banding pattern information of the two chromosome is

corrupted, making the information useless or even misleading

for an automatic classifier, and every procedure aiming at

normalizing the intensity information describing the banding

pattern will results in a suppression of the information com-

ing from the overlap-free region (Fig. 3b). As a consequence,

an effective and successful automatic karyotyping system

has to tackle the problem of chromosome classification even

in presence of missing or corrupted data. Generally, there

(a) (b)

Fig. 1. Typical Q-band prometaphase image acquired with PAL resolution
(a), and the manual kariotyping of the chromosomes (b)

are three ways of dealing with missing data [7], under

the assumption of data Missing At Random (MAR) or

Missing Completely At Random (MCAR), that is usually

a reasonable assumption in chromosome banding data. The

simplest way of proceeding would be to discard the missing

data (marginalization [8]), but this approach can be used

only if the amount of missing data is small. When two

chromosomes overlap, the corrupted region may be as long as

half the chromosome length, so that this approach is clearly

unfeasible.

The second approach is to rely on the robustness of the

learning algorithm, letting it to deal with missing values

in the training phase. The last is to replace the missing

values by estimated ones (imputation), either by imputing

each missing value with a statistical representative of the

non-missing values (e.g. through the mean or the median

or by a likelihood estimation [9]), or by incorporating the

classification label into the generative model [10]).

In karyotyping, successful classification schemes based

on neural network and support vector machines can not be

adapted to a marginalization approach, and they provide very

high classification error on corrupted chromosomes. In order

to tackle this problem, we propose to build a generative

a model for the class banding patterns, then obtaining a
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Fig. 2. (a) Original image of a class ”7” chromosome and its axis estimation. (b) Density profile of the actual chromosomes and (c) of the generative
model. Circles indicate a single density profile instance, while solid line and shaded area indicate class ”7” average and standard deviation, respectively.

set of synthetic patterns by replacing the missing data with

profiles obtained by the generative models for each class. The

classification of this set will provide a Monte Carlo estimate

of the probability a posteriori for each class. We will show

that the classification performance are superior both to the

direct classification of the corrupted pattern, and to the voting

scheme obtained by replacing the missing data with simple

statistics (the class means) on real chromosome data.

II. MATERIALS

1) Chromosome Data: Q-band images are cytogenetic

data obtained by staining the chromosomes with quinacrine,

appearing with dark background, onto which the chromo-

somes stand out as light objects, with bright and dark

banding. The dataset we used is composed of 119 cells,

containing a total number of 5474 chromosomes. The im-

ages were sequentially acquired during routine laboratory

analysis (Fig. 1a) and then an expert cytologist manu-

ally classified the chromosomes composing the karyotype

(Fig. 1b). 342 overlapping chromosomes were identified,

and each chromosome region involved in an overlap was

manually outlined: this dataset is available for download at

http://bioimlab.dei.unipd.it.

2) Feature Extraction: After estimating the chromosomes

axis by means of the algorithm described in [5], the density

profile of each chromosome is extracted. The density profile

is meant to be a representation of the chromosome banding

patter and is obtained as the mean intensity of the pixels

along the chromosome diameter at a number of discrete

sampling points. The number of sampling points is set to

M = 64. This value was empirically determined as the best

compromise between discriminating power and resiliency

to noise of these feature. To reduce the intra-class feature

variance and in order to make the measurements comparable

among different images, the density profile has been nor-

malized so to make its values are in the range [0, 1] and an

automatic polarisation step is performed, based on a binary

classifier described in [11].

III. METHODS

In a classical Bayesian framework, where we have K
classes ck and an observed feature vector o, the classification

problem is formalized as:

c∗ = max
c

p(ck|o) =
p(o|ck)p(ck)
∑

k p(o|ck)
(1)

When part of the feature vector o is missing, with the missing

part being m, the problem becomes:

c∗ = max
c

p(ck|o) = max
c

∫

Ω

p(ck|o,m)p(m)dΩ (2)

with Ω the domain of the missing vector m: the class with

the maximum probability given the observation, is the one

maximizing p(ck|o) considering all possible patterns of the

missing values.

The joint probability density of m and o and the proba-

bility density of m can be very hard to estimate, especially

when, as in the karyotyping problem, the number of classes

and the dimensionality of the feature space are high, and

the position and extension of the missing data within the

feature vector o are variable. Hence we try to build a simple

generative model for the missing data p(m|o, ck) for each

class ck, so to obtain an estimate of the integral in Eq. 2 via

a Monte Carlo procedure:

p(ck|o) ≃
1

I

I
∑

i

p(ck|o,mi)p(mi|o, ck) (3)

with p(mi|o, ck) a synthetic pattern generated for the missing

data, given the observed data and the class under considera-

tion.

A. Density Profile Generative Model

The samples of the density profile F (i), i = 1, . . . ,M of

each class is a smoothed and noisy version of the banding

pattern: this sequence can be represented by the superposition

of a mixture model of N gaussian distributions (see Fig. 2b):

F (i) ≃ g(i; s) =

N
∑

n=1

gn(i; s) =

N
∑

n=1

pn√
2πσn

e
−0.5

(i−µn)2

σ2
n

(4)

with s = {p1, . . . , pN , µ1, . . . , µN , σ1, . . . , σN} 3N -

dimensional parameter vector and the weighting factors pi
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normalized:
N
∑

n=1

pn = 1

The parameter vector s describing each density profile is

estimated through an expectation-maximization[7] procedure,

that involves the iteration of two steps until convergence:

the evaluation of the expected log-likelihood of the data

given the current estimates of the parameters (E-step), and a

subsequent refinement of the estimates obtained maximising

the obtained log-likelihood with respect to the parameters

(M-step). Since one of the major problem in parameter

estimation is a careful set of initial estimates, we would like

to provide the algorithm with an initial distribution which

present very distinct and non ambiguous modes. We therefore

will set a small initial variance for every distribution , and

equal weighting factors, whereas the initial means µi are

provided by a fuzzy c-means clustering with N classes: the

identified cluster centers are the initial mean values.

Each chromosome can thus be identified by the set of 3N
parameters identifying its mixture-model, with the value of

modes N being a class-specific value. Given the number of

data points d composing each chromosome density profile,

a measure of the goodness of a model can be obtained

by evaluating the unbiased Akaike Information Criterion

(AICU) proposed in [12]:

AICu = log

(

RSS

d

)

+
d+ 3 ·N

d− 3 ·N − 2
(5)

RSS =
∑

i

((g(i; s)−DP (i))2) (6)

For each chromosome ck of a class k, the 3N parameters

of the mixture models are estimated, and the correspond-

ing value of the AICu(ck, N) measure evaluated, for N
spanning the range [1, 6]. Then, the mean value µk(N) =
Eck [AICu(ck, N)] for the AICu measure over all chromo-

some of the class, for each model, is evaluated, so that the

model yielding the minimum value of it is retained as the

best:

Nk = argmin(µAICu(N)) (7)

Given the gaussian mixture model description available for

each chromosome, it is possible to obtain a statistical de-

scription of the parameters within each class. By assuming

that the parameter distribution of each of the 24 chromosome

classes can be entirely described by its first two moments,

for the kth class we can compute:

µ(k)s = E[s|k] (8)

Σ(k)s = V ar[s|k] (9)

With this description, given a class k, we are able to draw

a set of parameters s
∗

k from a 3N -dimensional normal

distribution N (µ(k),Σ(k)), and then generate a synthetic

profile g(i, s∗k) (Fig. 2c).
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Fig. 3. (a) Original image of an overlapping class ”2” chromosome, and its
axis estimation. (b) Circles indicate the chromosome density profile, while
solid line and shaded area indicate class ”2” average and standard deviation,
respectively.

B. Classification function

Chromosome classes are not linearly separable, whereas

the problem dimensionality makes a non-parametric proba-

bility density estimation, to be used in a Bayesian classifier,

unfeasible with a reasonable number of training samples.

Following the approach used to tackle the same problem [13],

[3], [14], [15], [16], we use an Artificial Neural Network

(ANN) classifier. In fact, given an input vector F , the output

vector h = H(F ) of a sufficiently complex ANN can be used

as least square estimators for posterior probabilities [17]. In

our case the element Hk(F ) can be viewed as the probability

of the input to belong to the kth available class:

H : RM → [0, 1]N ∈ R
N (10)

We used M input nodes, a hidden layer of (M + N)/2
nodes and N output nodes. All activation functions are

log-sigmoidal. The network was trained, using the scaled

conjugate gradient method, a robust variant of the common

back-propagation algorithm. In order to avoid over-fitting, the

training session was early-stopped according to the increase

of the classification error on 20% randomly chosen elements

extracted from the training set.

C. Monte Carlo estimation

Given a density profile Fcorrupted with a corrupted part

m, this latter part can be replaced by the corresponding data

extracted from a synthetic profile of the kth class, g(i, s∗k),
obtained as described in Sec. III-A, resulting in a new density

profile F ∗

k .

The probability p(ck|o), with o = F ∗

k that the profile

belongs to the kth class is evaluated for each class through

the classification function P (c|o) = [p(c1|o), . . . , p(cK |o)] =
H(F ∗

k ). By the imputation-classification procedure I = 100
times for each class, K ∗ I = 2400 synthetic samples and

classification vectors Pi(c|o) = H(F ∗

k,i) are generated.

The final classification is obtained by the Monte Carlo

maximum a posteriori estimate:

max
c

Ei [Pi(c|o)] = max
c

1

I

I
∑

i=1

Pi(c|o) (11)
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D. Class Means Imputation

At variance with the generative model approach described,

a simpler imputation strategy is considering the mean profile

for each class F̄ obtained from a training set, and then

obtaining the new profile F ∗

k by replacing the corrupted

part of Fcorrupted with the corresponding part in F̄ . Since

no variability is taken into account, only K imputation can

be performed, one for each different class, thus obtaining

Pk(ck|o) = H(F ∗

k ). The final classification becomes:

max
c

Ei [Pk(ck|o)] = max
c

1

K

I
∑

k=1

Pk(ck|o) (12)

IV. RESULTS

The classification results are shown in Tab. I. For sake of

comparison, the performance of the NN on the training set,

comprising both corrupted and uncorrupted chromosomes,

are also reported, along with the performance on the test

data for the uncorrupted chromosomes alone. The results of

the classification on the corrupted profiles in the test set,

and on the instances using the class means imputation and

on those obtained with the Monte Carlo strategy, are then

shown. It can be clearly appreciated the improvement of

the class mean imputation with respect to using the original

corrupted features, and the further increase in performance

by using the proposed strategy. It is worth noting that

even if all probabilities of correct classification are below

0.5, they are far better than random guess for the 24-class

problem considered, whose difficulty can be appreciated by

comparing the original performance of the neural-network on

the uncorrupted profiles (probability of correct classification

of 0.87), with that on the corrupted profiles (probability of

correct classification of 0.17).

TABLE I

PERFORMANCE ON REAL CYTOGENETIC DATA.

Dataset Mean (StD)

Train - all chromosomes 0.87 (0.01)
Test - uncorrupted 0.84 (0.01)

Test - corrupted 0.17 (0.02)
Mean sub. - corrupted 0.28 (0.02)
MC sub. - corrupted 0.36 (0.01)

V. CONCLUSIONS

In this paper, we have shown that if a generative model for

the data is available or if can be estimated from the data, it

can be exploited in order to classify objects with corrupted or

missing data, that are usually affected by a high classification

error. By replacing the corrupted data with synthetic profiles

obtained using the available generative models for each class,

and under the assumption of uniform a priori probability, we

transform the classification with missing data in a voting

strategy among the profiles with the replaced data.

We show the superiority of the proposed approach in clas-

sifying real cytogenetic corrupted data both with respect to

the imputation of the class-means profiles and to the classifier

trained on the corrupted and uncorrupted data together, more

than doubling the original classification performance.
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