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Abstract— Magnetic Resonance Imaging (MRI) is known to
be significantly affected by a number of acquisition artifacts,
such as intensity non-standardness, bias field, and Gaussian
noise. These artifacts degrade MR image quality significantly,
obfuscating anatomical and physiological detail and hence need
to be corrected for to facilitate application of computerized
analysis techniques such as segmentation, registration, and
classification. Specifically, algorithms are required to correct for
bias field (intensity inhomogeneity), intensity non-standardness
(drift in tissue intensities across patient acquisitions), and
Gaussian noise, an artifact that significantly affects and blurs
tissue boundaries (resulting in poor gradients). While clearly
one needs to correct for all these artifacts, the exact sequence in
which all three operations need to be applied in order to maxi-
mize MR image quality has not been explored. In this paper, we
empirically evaluate the interplay between distinct algorithms
for bias field correction (BFC), intensity standardization (IS),
and noise filtering (NF) to study the effect of these operations
on image quality in the context of 3 Tesla T2-weighted (T2w)
prostate MRI. 7 different sequences comprising combinations
of BFC, IS, and NF were quantitatively evaluated in terms
of the percent coefficient of variation (%CV), a statistic which
attempts to quantify the intensity inhomogeneity within a region
of interest (prostate). The different combinations were also
independently evaluated in the context of a classifier scheme
for detection of prostate cancer on high resolution

in vivo T2w prostate MRI. A secondary contribution of this
work is a novel evaluation measure for quantifying the level of
intensity non-standardness, called difference of modes (DoM).
Experimental evaluation of the different sequences of operations
across 22 patient datasets revealed that the sequence of BFC,
followed by NF, and IS provided the best image quality in
terms of %CV as well as classifier accuracy. The DoM measure
was able to accurately capture the level of intensity non-
standardness present in the images resulting from the different
sequences of operations.

I. INTRODUCTION

Acquisition artifacts associated with Magnetic Resonance

Imaging (MRI) may be categorized into the following main

categories: (1) bias field related intensity non-uniformity [1],

(2) inter-acquisition non-standardness [2], and (3) Gaussian

noise [3]. Both intensity non-uniformity (nonlinear signal

intensity variation across an MR image, caused by the multi-

plicative effect of low pass signal intensity [1]) and intensity
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non-standardness (drift in image intensities across different

acquisitions) are known to be caused mainly due to the ef-

fects of radio frequency field nonuniformity, patient anatomy,

and scanner differences [4]. The aim of bias field correction

(BFC) is to reduce MR image intensity non-uniformity either

by a filtering based or bias field model based approach

[1]. Intensity standardization (IS) approaches have been

previously proposed to correct for the misalignment between

intensity distributions across different MRI acquisitions [2].

Gaussian noise is typically addressed via noise filtering (NF),

where the goal is to smooth image intensities within a tissue

region while preserving (or accentuating) tissue boundaries

[3].

Correcting for these three classes of image intensity ar-

tifacts has been shown to be highly relevant to improving

image quality in order to facilitate application of com-

puterized image analysis algorithms. For example, it has

been previously shown that both image registration [5] as

well as tissue classification [6] are significantly affected by

these three artifacts. Similarly, segmentation performance

has also been shown to be affected by the presence of

bias field inhomogeneity and intensity non-standardness [7].

Thus, while it is clear that all three techniques need to be

applied to MR imaging data to maximize image quality, the

exact sequence of application for these operations is not

immediately obvious.

Some prior studies have focused on identifying the correct

sequence of a subset of operations (e.g BFC and IS [4]

and NF and BFC [8]), but to our knowledge, no studies

have attempted to identify the optimal sequence of all three

operations simultaneously, for maximizing image quality.

Madabhushi and Udupa [4] showed that BFC should be

followed by IS from the perspective of improving MR image

quality; succeeding IS by BFC resulted in the introduction

of image intensity non-standardness. Similarly, Montillo et al

[8] concluded that BFC should precede NF, since bias correc-

tion algorithms had the unfortunate side-effect of introducing

noise into the image. By leveraging the conclusions drawn

in [4], [8], we were able to eliminate several sequences of

post-processing operations from consideration for this study.

Figure 1 shows the effect of applying BFC, IS, and NF

(specific algorithms employed are described in Section II.B)

on a cohort of endorectal, T2-weighted (T2w) prostate MRI

studies. It may be observed that the BFC, IS, and NF
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Fig. 1. Intensity distributions resulting from the application of post processing techniques on 4 different endorectal, prostate T2w MRI patient studies
(each color corresponds to a different patient). Inlets depict regions of intensity distribution alignment, or lack thereof. Given the original uncorrected
images (a) C, results of post-processing are shown for (b) Cκ (BFC), (c) Cτ (IS), and (d) Cη (NF). Different combinations of these operations such as
(e) Cκτ (f) Cκη (g) Cκτη (h) Cκητ are further evaluated from the perspective of optimal image quality. Note that different operations are seen to affect
the intensity distributions in different ways. Scenarios where misalignment between distributions is observable ((a), (b), (d), (f), (g)) are reflective of the
non-standardness artifact.

operations affect the subsequent image intensity distributions

in very different ways (Figures 1(b), (c), (d)). The original,

un-processed image (Figure 1(a)) reveals the effects of bias

field (multiple modes in distribution), noise (non-smooth

distributions), and non-standardness (mis-alignment between

intensity distributions; modes do not line up). BFC (Figures

1(b), (e), (f), (g), (h)) and NF (Figures 1(d), (f), (g), (h)) result

in smoother distributions with the modes corresponding to

the bias field eliminated. Finally all sequences involving

IS (Figures 1(c), (e), (g), (h)) result in removal of the

intensity drift by aligning the intensity distributions. Note

however, that in Figure 1(g) where NF succeeds IS, some

mis-alignment in distributions (non-standardness) appears to

have been introduced.

In [4], [9], [10], [11] performance measures such as

percent coefficient of variation (%CV) and peak signal to

noise ratio were employed to specifically evaluate the effects

of BFC and NF, respectively. Relatively few performance

Fig. 2. A flowchart representing the 7 post-processing sequences we have
experimentally compared, in addition to the uncorrected image. C represents
an uncorrected image, κ represents BFC, τ represents IS, and η represents
NF.

measures have been proposed to evaluate the effect of IS.

While Madabhushi and Udupa [4] utilized normalized mean

intensity (NMI) to evaluate IS, this statistic is calculated

for each acquisition individually, and hence may be sub-

optimal when evaluating inter-acquisition non-standardness

(i.e. amount of intensity drift between different studies). In

this work, we introduce a novel measure to evaluate IS,

termed difference of modes (DoM). In addition to evaluating

the effects of NF, BFC, and IS individually, we also evaluate

the effect of the sequences in the context of a domain specific

task: detecting prostate cancer (CaP) on in vivo T2w MRI.

The contributions of this study are hence:

• A novel performance measure, difference of modes, for

evaluating the effect of IS.

• Quantitatively determining the optimal sequence of

BFC, IS, NF in order to maximize image quality and

classifier accuracy for CaP detection on T2w, endorectal

prostate MRI.

II. EXPERIMENTAL DESIGN

A. Data Description and Notation

Twenty two in vivo 3 Tesla pre-operative endorectal T2w

MRI patient datasets were acquired. For each patient, anno-

tations of CaP presence and extent had been mapped onto

T2w MRI (as described in [12]) via image registration with

corresponding ex vivo histology, for a total of 94 distinct T2w

MR images. These annotations formed the ground truth for

disease extent when training and evaluating our classifier for

CaP detection. We denote an uncorrected T2w prostate MR

image as C = (C, f), where f(c) is the measured signal

intensity associated with every voxel c in a 3D grid C.
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Type Name Evaluation of Interpretation

Generalized post-processing
evaluation

% Coefficient of Variation (φCV ) BFC (BFC) Lower φCV implies more effective BFC [10]

Difference of Modes (φDoM ) IS (IS) Lower φDoM indicates improved IS

Application-based evaluation Area Under the Curve (φAUC )
classification perfor-
mance

Higher φAUC implies superior classification per-
formance [9]

TABLE I

PERFORMANCE MEASURES OF CORRECTION, STANDARDIZATION, AND FILTERING SCHEMES.

B. Review of post-processing operations

1) Bias Field Correction (BFC): The N3 method [1] was

chosen for BFC based on its balance of calculation speed as

well as robustness [9]. N3 seeks to find the multiplicative

field that maximizes the high frequency components of

the MR image intensity distribution. This is achieved by

assuming the field is Gaussian, de-convolving the field into

narrower Gaussian distributions and generating estimates of

the true underlying intensity distribution. This process is

performed iteratively until changes to the estimated intensity

distribution are minimal [1]. The result of BFC on the

original acquired MR image C (Figure 1(a)) is denoted by

Cκ (Figure 1(b)).

2) Intensity Standardization (IS): Landmark-based inten-

sity standardization [2] was used to align the image intensity

distributions between patient studies. Intensity landmarks are

first chosen at specific percentiles on a template distribution:

the 1st percentile, 99th percentile, and every tenth percentile

from 10 to 90 [2]. Test and template intensity distributions

are then non-linearly aligned to one another by mapping

intensity ranges between corresponding landmark intensities

on the two distributions. The result of standardizing the scene

C is denoted by Cτ (Figure 1(c)).

3) Noise Filtering (NF): Anisotropic diffusion based fil-

tering is an intra-region smoothing process for the removal

of noise and the enhancement of edges. Regions are selected

based on edge estimation using the gradient of intensity

values within the MR image[3]. The regions are smoothed

internally, effectively removing Gaussian noise. After appli-

cation of NF to C, the result is denoted by Cη (Figure 1(d)).

C. Outline of post-processing sequences

Fifteen possible post-processing sequences could be con-

sidered, utilizing different combinations of BFC, IS, and NF:

Cκ, Cτ , Cη, Cκτ , Cκη , Cτκ, Cτη , Cηκ, Cητ , Cκτη , Cκητ , Cτκη,

Cτηκ, Cηκτ , and Cητκ. Based on previous work by Montillo

et al [8] and Madabhushi and Udupa [4], we eliminated

8 of these combinations by ensuring that NF and IS were

always preceded by BFC. The 7 remaining operations were

each applied to the data and results were individually evalu-

ated. We additionally evaluated the unprocessed image C to

observe the exact improvements offered via post-processing

MRI data.

1) Percentage co-efficient of variation (φCV ): Employed

to evaluate the effects of BFC [4], [9], [8], [10], and defined

as

φCV =
σ

µ
,

where σ is standard deviation, and µ is mean of a region

of interest, which was the prostate for the purposes of this

study. A decrease in φCV implies a reduction in the bias

field inhomogeneity [10].

2) Difference of Modes φDoM for evaluating

non-standardness: This measure is expressed as,

φDoM =
| ωtest − ωtemp |

ωtemp
,

where ωtest is the principal mode of the intensity distribution

of an MR image undergoing IS, and ωtemp is the principal

mode of the template intensity distribution that is being

standardized against. We posit that the average φDoM over

all MR images that have been standardized will be higher

if their intensity distributions remain misaligned. Note that

the variance of φDoM must also be calculated to throughly

test the extent to which intensity non-standardness has been

eliminated following IS. A high φDoM is reflective of a high

degree of intrinsic non-standardness.

3) Classifier-based evaluation: Automated classification

of CaP on MRI data was considered for independent eval-

uation of post-processing operations. The classifier scheme

[13], [9] comprises the following steps:

1) Extracting 110 texture features to model appearance of

CaP and benign regions on prostate MR imagery [13].

2) Feature selection[14], to select the 10 most discrimi-

natory texture features for CaP presence.

3) Performing automatic classification to identify pres-

ence or absence of CaP on a per-pixel basis via a

Bayesian classifier upon the output of Step 2 [13].

4) Evaluating the classifier results from Step 3 against

the ground truth extent for CaP on MRI on a per pixel

basis [13].

Classification was performed in this manner for each of 94

slices (using a 3-fold cross validation approach to avoid

training bias), and repeated for each of the 7 post-processing

sequences (along with the uncorrected data) compared in this

work. Cross validation entailed dividing the data set into 3

subsets, and each subset was used as a test set once. After

all subsets were tested once, the subsets were randomized.

25 iterations of randomized cross validation were performed.

Classifier accuracy was evaluated utilizing the classical Area

Under the ROC Curve (AUC) parameter.

III. RESULTS AND DISCUSSION

Each sequence shown in Figure 2 was evaluated on a per-

slice basis in terms of φCV , φDoM , as well as φAUC(derived

from CaP classifier). One-way ANOVA tests were then con-

ducted for each measure to determine statistical significance
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Technique φCV φDoM φAUC

C 58.047±10.251 0.3968±0.220 0.6299±0.00470

Cκ 37.719 ±8.253 0.2208±0.0483 0.6316±0.00446

Cτ 46.059±1.330 0.2202±0.0372 0.6182±0.01441

Cη 57.001±10.75 0.6418±0.0221 0.6078±0.01707

Cκτ 25.329±1.044 0.0597±0.0033 0.6084±0.00972

Cκη 35.883±8.922 0.2351±0.0410 0.6306±0.01410

Cκτη 23.838±1.218 0.0796±0.0028 0.6240±0.02580

Cκητ 21.9324±1.002 0.0996±0.0067 0.6412±0.01212

TABLE II

AVERAGES AND STANDARD DEVIATIONS OF φCV , φAUC , AVERAGE

AND VARIANCE OF φDoM . VALUES AVERAGED OVER 94 DISTINCT MR

IMAGES. BEST RESULTS FOR EACH COMPARISON HAVE BEEN BOLDED.

of the results with the null hypothesis being that there was

no difference in performance between the 8 sequences con-

sidered over all 94 slices in each comparison. The Analysis

of Variance (ANOVA) test compares the means of multiple

samples to determine whether differences are the result of

error, or assignable cause (statistical significance). A single

ANOVA test fulfills the same purpose as multiple t-tests,

without the accompanying complications.

A. Experiment 1: To determine which post-processing oper-

ation (κ, τ, η) maximally improves image quality

Cκ was found to significantly (p < 0.05) outperform both

Cη and Cτ in terms of φCV and φAUC , which resonates

with previous results obtained by Madabhushi et al [4] and

Montillo et al [8]. When inspecting the contribution of η and

τ individually to the result of Cκ, Cκη and Cκτ were found

to demonstrate mixed performance (optimal in terms of φCV

and φDoM but not in terms of φAUC).

B. Experiment 2: To determine the sequence of post-

processing operations that maximally improves image quality

Cκητ demonstrated statistically significantly (p < 0.05)

superior performance compared to the remaining 7 se-

quences in terms of φAUC and φCV . While Cκητ performed

marginally worse compared to Cκτη in terms of φDoM , this

may be on account of the fact that the decrease in φDoM for

Cκητ with respect to Cκη is significantly larger as compared

to the corresponding change from Cκτ to Cκτη (where φDoM

can be seen to increase). Note that when τ precedes η, lower

quality (in terms of both φCV and φAUC) is observed in

comparison to the unprocessed image C, implying that NF is

ideally applied prior to IS. Interestingly, our results concur

with the combined conclusions of Madabhushi et al. [4] and

Montillo et al. [8] who respectively found that (a) bias field

correction should precede intensity standardization and (b)

noise filtering should follow bias field correction.

C. Experiment 3: To determine the effectiveness of φDoM as

an evaluation measure for image intensity standardization

φDoM was found to accurately quantify the effect of IS

in all our experiments. In every case, both mean φDoM and

variance of φDoM were found to significantly decrease after

IS was applied to the data (p < 0.05). We also found that

NF increases φDoM as did BFC.

Comparison φCV φDom φAUC

C Cκ Cτ , Cη 1.35 exp−54 2.97 exp−16 7.09 exp−11

C Cκτ , Cκη 3.17 exp−85 5.88 exp−30 1.30 exp−11

C Cκτη , Cκητ 6.60 exp−174 1.12 exp−45 .00235

All Sequences 3.30 exp−132 2.29 exp−56 1.19 exp−16

TABLE III

P-VALUES FOR ANOVA TESTS, NULL HYPOTHESIS BEING THAT THERE

IS NO DIFFERENCE BETWEEN SEQUENCES CONSIDERED IN EACH

COMPARISON. THE COMPARISON IS STATISTICALLY SIGNIFIGANT

IV. CONCLUDING REMARKS

In this study, we have attempted to determine the optimal

post-processing sequence for bias field correction, intensity

standardization and noise filtering on 3 Tesla prostate T2-

weighted MRI data. Our main conclusions were:

• The most optimal sequence was determined to be bias

field correction, followed by noise filtering, and inten-

sity standardization.

• Noise filtering, like bias field correction, introduces non-

standardness.

• We have presented and demonstrated the effectiveness

of a novel evaluation measure which quantifies the

effect of intensity standardization, called difference of

modes.
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