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Abstract— The spermatogenesis is crucial to the species
reproduction, and its monitoring may shed light over some
important information of such process. Thus, the germ cells
quantification can provide useful tools to improve the reproduc-
tion cycle. In this paper, we present the first work that address
this problem in fishes with machine learning techniques. We
show here how to obtain high recognition accuracies in order to
identify fish germ cells with several state-of-the-art supervised
pattern recognition techniques.

I. INTRODUCTION

The histomorphometric study is an approach for better

understanding the spermatogenic processes and also the

testicular function [1]. This evaluation allows the estimation

of the spermatogenic efficiency for each specie, through,

for example, the length of seminipherous tubules, frequency

of germ cysts, spermatogonium generations, percentage and

length of different germ cells, among others [2]. The use of

morphology allow us to get deeper with cell kinetics and

histophysiology of germ and Sertoli cells, being currently a

valuable tool to the interpretation of the gonads in fishes [3].

However, one has no studies guided for automatic identifi-

cation of such germ cells up do date. Based on this assump-

tion, we propose in this work the automatic identification of

fish germ cells using machine learning techniques. Hence-

forth, we focus on Optimum-Path Forest (OPF) [4], which

is a recently developed technique that has demonstrated to

be similar to Support Vector Machines (SVM) [5], but much

faster for training.

The OPF classifier models the problem of pattern recog-

nition as a problem of a graph partition into optimum-path

trees (OPTs), which are rooted at a given set of key samples,

and the optimality criterion is given by a smooth-path cost

function [4]. Thus, depending on the way you build the graph

and the adopted path-cost function, one can design a new

OPF-based classifier.

The main contributions of this paper are threefold: (i) to

present an automatic framework for fish germ cells classifica-

tion, (ii) to introduce the OPF classifier for biological-based

applications and (iii) to create a dataset composed by labeled
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germ cells. We would like to stress that, although we focus

on fish cells, we can extend it to another kind of germ cells,

like human ones. The remainder of this paper is organized

as follows. Sections II and III present the OPF classifier and

materials and methods, respectively. The experimental results

are discussed in Section IV and conclusions are stated in

Section V.

II. OPTIMUM-PATH FOREST

Let Z1 and Z2 be the training and test sets with |Z1| and

|Z2| samples such as points or image elements (e.g., feature

vectors, pixels, voxels, shapes and texture information). Let

λ(s) be the function that assigns the correct label i, i =
1, 2, . . . , c, from class i to any sample s ∈ Z1 ∪ Z2. Z1 is a

labeled set used to the design of the classifier and Z2 is used

to assess the performance of classifier and it is kept unseen

during the project.

Let S ⊂ Z1 be a set of prototypes of all classes (i.e., key

samples that best represent the classes). Let v be an algorithm

which extracts n attributes (color, shape or texture properties)

from any sample s ∈ Z1∪Z2 and returns a vector ~v(s) ∈ ℜn.

The distance d(s, t) between two samples, s and t, is the one

between their feature vectors ~v(s) and ~v(t). One can use any

valid metric (e.g., Euclidean) or a more elaborated distance

algorithm. Our problem consists of using S, (v, d) and Z1

to project an optimal classifier which can predict the correct

label λ(s) of any sample s ∈ Z2. The OPF classifier creates

a discrete optimal partition of the feature space such that any

sample s ∈ Z2 can be classified according to this partition.

This partition is an optimum path forest (OPF) computed in

ℜn by the image foresting transform (IFT) algorithm [6].

Let (Z1, A) be a complete graph whose the nodes are

the samples in Z1 and any pair of samples defines an arc

in A = Z1 × Z1. The arcs do not need to be stored and

so the graph does not need to be explicitly represented. A

path is a sequence of distinct samples π = 〈s1, s2, . . . , sk〉,
where (si, si+1) ∈ A for 1 ≤ i ≤ k − 1. A path is said

trivial if π = 〈s1〉. We assign to each path π a cost f(π)
given by a path-cost function f . A path π is said optimum if

f(π) ≤ f(π′) for any other path π′, where π and π′ end at a

same sample sk. We also denote by π·〈s, t〉 the concatenation

of a path π with terminus at s and an arc (s, t).
The OPF algorithm may be used with any smooth path-

cost function which can group samples with similar proper-

ties [6]. We are interested in prototypes that fall in the region

between classes, which are generally overlapped regions. So,

we will address the path-cost function fmax, because of its
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theoretical properties for estimating prototypes that have this

behavior (Section II-A gives the details about this procedure):

fmax(〈s〉) =

{

0 if s ∈ S,

+∞ otherwise

fmax(π · 〈s, t〉) = max{fmax(π), d(s, t)}, (1)

such that fmax(π) computes the maximum distance between

adjacent samples in π, when π is not a trivial path.

The OPF algorithm assigns one optimum path P ∗(s)
from S to every sample s ∈ Z1, forming an optimum

path forest P (a function with no cycles which assigns

to each s ∈ Z1\S its predecessor P (s) in P ∗(s) or a

marker nil when s ∈ S. Let R(s) ∈ S be the root of

P ∗(s) which can be reached from P (s). The OPF algorithm

computes for each s ∈ Z1, the cost C(s) of P ∗(s), the

label L(s) = λ(R(s)), and the predecessor P (s), as follows.

Algorithm 1: – OPF ALGORITHM

INPUT: A λ-labeled training set Z1, prototypes S ⊂
Z1 and the pair (v, d) for feature vector and
distance computations.

OUTPUT: Optimum-path forest P , cost map C and label
map L.

AUXILIARY: Priority queue Q and cost variable cst.
1. For each s ∈ Z1\S, set C(s)← +∞.
2. For each s ∈ S, do
3. C(s)← 0, P (s)← nil, L(s)← λ(s), and insert s in Q.
4. While Q is not empty, do
5. Remove from Q a sample s such that C(s) is minimum.
6. For each t ∈ Z1 such that t 6= s and C(t) > C(s), do
7. Compute cst← max{C(s), d(s, t)}.
8. If cst < C(t), then
9. If C(t) 6= +∞, then remove t from Q.
10. P (t)← s, L(t)← L(s), C(t)← cst
11. Insert t in Q.

Lines 1 − 3 initialize maps and insert prototypes in Q.

The main loop computes an optimum path from S to every

sample s in a non-decreasing order of cost (Lines 4−10). At

each iteration, a path of minimum cost C(s) is obtained in

P when we remove its last node s from Q (Line 5). Ties are

broken in Q using first-in-first-out policy. That is, when two

optimum paths reach an ambiguous sample s with the same

minimum cost, s is assigned to the first path that reached it.

Note that C(t) > C(s) in Line 6 is false when t has been

removed from Q and, therefore, C(t) 6= +∞ in Line 9 is

true only when t ∈ Q. Lines 8 − 11 evaluate if the path

that reaches an adjacent node t through s is cheaper than the

current path with terminus t and update the position of t in

Q, C(t), L(t) and P (t) accordingly.

A. Training

We say that S∗ is an optimum set of prototypes when

Algorithm 1 minimizes the classification errors for every s ∈
Z1. S∗ can be found by exploiting the theoretical relation

between minimum-spanning tree (MST) and optimum-path

tree for fmax [7]. The training essentially consists of finding

S∗ and an OPF classifier rooted at S∗.

By computing an MST in the complete graph (Z1, A),
we obtain a connected acyclic graph whose nodes are all

samples of Z1 and the arcs are undirected and weighted by

the distances d between adjacent samples. The spanning tree

is optimum in the sense that the sum of its arc weights

is minimum as compared to any other spanning tree in

the complete graph. In the MST, every pair of samples is

connected by a single path which is optimum according

to fmax. That is, the minimum-spanning tree contains one

optimum-path tree for any selected root node.

The optimum prototypes are the closest elements of the

MST with different labels in Z1 (i.e., elements that fall in

the frontier of the classes). By removing the arcs between

different classes, their adjacent samples become prototypes

in S∗ and Algorithm 1 can compute an optimum-path forest

with minimum classification errors in Z1.

B. Classification

For any sample t ∈ Z2, we consider all arcs connecting t

with samples s ∈ Z1, as though t were part of the training

graph. Considering all possible paths from S∗ to t, we find

the optimum path P ∗(t) from S∗ and label t with the class

λ(R(t)) of its most strongly connected prototype R(t) ∈ S∗.

This path can be identified incrementally, by evaluating the

optimum cost C(t) as

C(t) = min{max{C(s), d(s, t)}}, ∀s ∈ Z1. (2)

Let the node s∗ ∈ Z1 be the one that satisfies Equation 2

(i.e., the predecessor P (t) in the optimum path P ∗(t)). Given

that L(s∗) = λ(R(t)), the classification simply assigns L(s∗)
as the class of t. An error occurs when L(s∗) 6= λ(t).

III. MATERIALS AND METHODS

In this section we describe the proposed method to tackle

the problem of automatic classification of fish germ cells.

As aforementioned in Section I, one can assesses several

crucial information about the germinative process in fishes

by considering the amount of germ cells at the seminipherous

tubules. Figure 1 displays an image obtained from the

seminipherous tubule of Leporinus macrocephalus, a typical

Brazilian fish. This image was obtained through an optical

microscope with 40× of magnification.

Thus, a specialist system to automatic quantify germ cells

can be described by two stages: (i) cell segmentation and

(ii) cell classification. In the former, possible germ cells

may be identified for further classification in the latter step.

In addition, a post-processing step after first stage may

be incorporated to the system in order to remove non-cell

objects, or even to refine the segmentation of true ones.

In this work, we are facing the problem of classifying

the four main fish germ cell types as follows: (i) spermato-

gonium, (ii) spermatocyte, (iii) spermatid and (iv) sperm.

Therefore, only the second step will be addressed here, since

we already have ground truth images, which were previous

segmented and labeled by a technician. It is important to shed

light over that the automatic segmentation step concerns with

our next work. Figure 2 displays some manually segmented

examples.
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Fig. 1. An 8/bits image obtained from the seminipherous tubule of
Leporinus macrocephalus.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Examples of (a) and (e) spermatogonium, (b) and (f) spermatocyte,
(c) and (g) spermatid and (d) and (h) sperm.

The main feature that allow us to distinguish the different

germ cells is their perimeter, since the cell division begins

with the spermatogonium type and ends over with the sperm.

Therefore, it is expected that the size of the cells will

decrease whether we go deeper onto the evolution process

among them. However, we may find some overlapping re-

garding the perimeter between spermatogonium and sperma-

tocyte. Thus, we decided to apply texture features together

with the perimeter information, since the spermatogonium

cell is characterized by a dark gray nucleolus, as one can

see in Figures 2a and 2e.

In order to extract texture information from these images,

we applied the Gabor filter [8] only in the image foreground,

i.e., in the object of interest, say that cell. The Gabor filter

can be mathematically formulated as follows:

G(x, y, θ, γ, σ, λ, ψ) = e
x
′2+y

′2
σ
2

2σ2 cos

(

2π
x′

λ
+ ψ

)

, (3)

where x′ = x cos(θ)+y sin(θ) and y′ = x sin(θ)+y cos(θ).
In the above equation, λ means the sinusoidal factor, θ

represents the orientation angle, ψ is the phase offset, σ is

the Gaussian standard deviation and γ is the aspect spatial

ratio.

The main idea of Gabor filter is to perform a convolution

between the original image I and Gθ,γ,σ,λ,ψ in order to

obtain a Gabor-filtered representation, as follows:

Îθ,γ,σ,λ,ψ = I ∗Gθ,γ,σ,λ,ψ, (4)

in which Îθ,γ,σ,λ,ψ denotes the filtered image. Thus, one can

obtain a filter bank of Gabor filtered images by varying its

parameters. In this work we used a convolution filter of size

3× 3 with the following Gabor parameters:

• 6 different orientations: θ = 0◦, 45◦, 90◦, 135◦, 225◦

and 315◦;

• 3 spatial resolutions: λ = 2.5, 3 and 3.5. Notice that,

for each one of λ values, we applied different values

for σ, say that σ = 1.96, 1.40 and 1.68;

• ψ = 0 and

• γ = 1.

Recall that these values were empirically chosen and based

on our previous experience.

Once we get the Gabor-filtered images (one can see that

we have 6× 3 = 18 images), we then compute the energy ǫ

of them, given by

ǫθ,γ,σ,λ,ψ =

√

∑

x,y

I2θ,γ,σ,λ,ψ(x, y), (5)

in which ǫθ,γ,σ,λ,ψ denotes the energy at image Îθ,γ,σ,λ,ψ.

Thus, each image is described by 19 features, being

18 of them related with texture and the remaining one is

the perimeter. The whole proposed procedure for feature

extraction is described by Figure 3.

Fig. 3. Pipeline of the proposed method for feature extraction.

Figure 4 displays the proposed pipeline with a spermato-

gonium cell. The thresholding step was performed by Otsu’s

method [9].

(a) (b) (c) (d)

Fig. 4. Proposed pipeline: (a) Original image, (b) thresholded image,
(c) extracted border, (d) Gabor-filtered image using λ = 3.5, θ = 315

◦,
σ = 1.96, γ = 1 and ψ = 0.

The dataset we used is composed by 80 images equally

distributed in 4 classes, i.e., we have 20 images for each
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germ cell type: spermatogonium, spermatocyte, spermatid

and sperm. All images were obtained from Leporinus macro-

cephalus fish.

Regarding classifiers, we used OPF, SVM with Radial

Basis Function as kernel mapping (SVM-RBF), SVM with

linear kernel mapping (SVM-LINEAR), SVM without kernel

mapping (SVM-NOKERNEL) and Self Organizing Maps

(SOM) [10]. For OPF implementation we used the LibOPF

package [11], and with respect to SVM classifiers we ap-

plied LibSVM [12] for SVM-RBF and SVM-LINEAR, and

LibLINEAR [13] for SVM-NOKERNEL. Finally, for SOM

networks we used our own implementation. Recall that SVM

parameters were optimized through cross-validation and for

SOM we used a 100× 100 neural lattice with 10 iterations

for learning.

IV. EXPERIMENTAL RESULTS

In this section we discuss the experimental results using

the classifiers highlighted in the previous section. We con-

ducted the experiments using 50% of the dataset for training

and the remaining 50% for testing, which were repeated 10

times with randomly generated training and test sets. Table I

displays the results.

Classifier Accuracy Training Classification
time [s] time [s]

OPF 98.33±0.000008 0.0002 0.0001

SVM-RBF 98.33±0.000008 1.34 0.004

SOM 96.66±0.000008 0.004 0.00006

SVM-LINEAR 98.338±0.000008 0.88 0.004

SVM-NOKERNEL 95.00±0.00 2.46 0.004

TABLE I

MEAN ACCURACY AND EXECUTION TIMES (TRAINING AND TESTING)

AFTER 10 RUNNINGS.

One can see that OPF, SVM-RBF and SVM-LINEAR

achieved similar results, but OPF was 6700 times faster than

SVM-RBF and 4400 times faster than SVM-LINEAR for

training. Regarding the classification time, OPF was 40 times

faster than SVM-RBF and SVM-LINEAR.

Note that all classifiers achieved good results, which can

demonstrate the effectiveness of the proposed methodology

to classify germ cells. In order to analyze the OPF misclas-

sification errors, we compute the confusion matrix from a

randomly selected execution. Table II shows this information.

Label 1 2 3 4

1 9 1 0 0
2 0 10 0 0
3 0 0 10 0
4 0 0 0 10

TABLE II

CONFUSION MATRIX.

As one can see, the only misclassification was due to

labels 1 and 2, i.e., spermatogonium and spermatocyte. This

is probably because of the similar perimeters of the images

and also the spermatogonium nucleolus might be brighter

than usual.

V. CONCLUSIONS

The monitoring of the spermatogenic cycle is very im-

portant to retain information about the reproduction of the

species, as well as to develop methods to deal with possible

problems of that.

In this paper, we address the problem of automatic clas-

sification of germ cells, and we validate our approach for

a Brazilian typical fish called Leporinus macrocephalus. A

dataset of labeled germ cells was built in order to accomplish

with this task.

We propose to extract Gabor-based texture features and to

use them together with the perimeter of the cells to automatic

identify four types of germ cells, say that spermatogonium,

spermatocyte, spermatid and sperm. For that, we used five

state-of-the-art supervised pattern recognition techniques, in

which OPF, SVM-RBF and SVM-LINEAR achieved similar

results, with OPF much faster for training and classification.

As far as we know, we are the first to propose an automatic

classification methodology for fish germ cells, and also to in-

troduce OPF in the context of biological-based applications.
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