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Abstract— Abnormal nodular branching opacities at the lung
periphery in Chest Computed Tomography (CT) are termed
by radiology literature as tree-in-bud (TIB) opacities. These
subtle opacity differences represent pulmonary disease in the
small airways such as infectious or inflammatory bronchiolitis.
Precisely quantifying the detection and measurement of TIB
abnormality using computer assisted detection (CAD) would
assist clinical and research investigation of this pathology
commonly seen in pulmonary infections. This paper presents a
novel method for automatically detecting TIB patterns based
on fast localization of candidates using local scale information
of the images. The proposed method combines shape index,
local gradient statistics, and steerable wavelet features to
automatically identify TIB patterns. Experimental results using
39 viral bronchiolitis human para-influenza (HPIV) CTs and
21 normal lung CTs achieved an overall accuracy of 89.95%.

I. INTRODUCTION

A common pattern of abnormality on Chest CT is TIB

opacity, in which thickened peripheral lung structures have

adjacent clusters of nodules, and generally represent disease

of the small airways (bronchioles) such as infectious or

inflammatory bronchiolitis [1]. TIB on Chest CT indicates

bronchiolar luminal impaction with mucus, pus, cells or fluid

causing normally invisible peripheral airways to become vis-

ible [1], as shown in Figure 1. The precise quantification of

lung volume affected by this disease process has been limited

by inter-observer variance with inconsistent visual scoring

methods. A CAD system designed to detect and quantify

TIB would add precision to the analysis of infectious lung

disease. However, there are many difficulties in detecting

TIB opacities. First, micro-nodules and abnormal peripheral

airway structures have strong shape and appearance similar-

ities to normal anatomical structures in the lungs. Second,

TIB often appears as a mixture of normal and abnormal

patterns because of the close anatomical proximity of normal

and abnormal regions, hence, discriminating those patterns

is often challenging.

In this study, we propose a new CAD system to quan-

tify pulmonary infections by automatically detecting TIB

patterns. The contributions of the paper are two-fold: (1)

Based on texture and shape characteristics of TIB patterns,
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Fig. 1. (Left) CT image with a significant amount TIB patterns. TIB
patterns are labelled in blue. (Right) Zoomed window on the right lung.

Fig. 2. The flowchart of the proposed TIB detection system.

a candidate selection method is proposed. (2) We propose

to use an integrated feature extraction scheme combining

local shape features, local gradient statistics, and steerable

features to specify TIB patterns. By candidate selection

method, all possible abnormal patterns are localized in the

lung fields. Next, we define local regions enclosing each

candidate pattern and extract shape and texture features from

local regions. Extracted features are classified as TIB or

normal using support vector machines (SVM). We compare

our proposed CAD system on the basis of different feature

sets previously shown to be successful in detecting lung

diseases in general.

II. CAD ALGORITHM

The proposed CAD system is illustrated in Figure 2.

First, lungs are segmented from CT volumes. Second, locally

adaptive scale based filtering is used to identify candidate

TIB pattern regions. Third, a local window is used around

each candidate point to define some discriminatory intrinsic

shape and textural features followed by SVM classification.

The results of the pixel-wise classification are presented as

area under receiver operating characteristic (ROC) curves

(Az).

5096

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011

U.S. Government work not protected by U.S. copyright



A. Segmentation

Segmentation is often the first step in typical CAD sys-

tems. In this study, fuzzy connectedness (FC) image seg-

mentation algorithm [2] is used. In this study, to initiate FC

segmentation, two seeds per volume (i.e., one for the right

lung and one for the left lung) are selected automatically

by only considering the locations of small intensity valued

pixels inside the body region.

B. Candidate Selection

TIB patterns have intensity characteristics having high

variation towards nearby pixels. The size of the body of a

TIB pattern and micro-structures nearby the body of the TIB

pattern do not exceed a few pixels in length. This implies that

TIB patterns are localized only in the vicinity of small scale

regions. In other words, TIB patterns do not constitute suffi-

ciently homogeneous regions over large regions. Non-smooth

changes in local gradient values support this observation. As

guided by these observations, we propose to use a locally

adaptive scale filtering to identify small scale regions. Those

small scale regions are named candidate regions. Selecting

candidate regions do not only restrict the problem into a

smaller subspace but also decrease the computational time

due to avoiding elaborate search on the large homogeneous

regions in the images.

As opposed to well known multi-scale global ap-

proaches [3], we use the concept of “scale” in the locally

adaptive sense [2]. In this phenomenon, the size of the scale

is allowed to change in different parts of the image. Based

on continuity of homogeneous regions, geometric properties

of objects (i.e., scale information) can be identified. In this

study, we define candidate TIB regions with ball-scale (or

b-scale for short) filtering followed by thresholding [5]. The

details of this process are explained in the next subsection.

1) Ball Scale Encoding: The main idea in b-scale en-

coding is to determine the size of local structures at every

pixel as the radius of the largest ball centered at the pixel

within which intensities are homogeneous under a pre-

specified region-homogeneity criterion. In this paper, we

use 2-dimensional b-scale encoding due to the following

fact: TIB patterns are small anatomical structures as seen

in Figure 1 that in order to fully appreciate their anatomical

details, thin slice CT scans with sub-millimeter resolution

(high resolution CT) are necessary. However, the CT data at

hand is low resolution with 5 mm slice spacing, which do

not allow continuous analysis of TIB patterns through low

resolution imaging direction.

In the 2D digital space (Z2,ν), a scene C = (C,f) is

represented by a pair where C is a rectangular array of

pixels, ν = (ν1,ν2) indicates the size of the pixels, and f

is a function that assigns to every pixel an image intensity

value. A ball Bk,ν(c) of radius k ≥ 0 and with center at a

pixel c ∈C in C is defined by

Bk,ν(c) =
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Fig. 3. (a) b-scale scene. (b) Thresholded b-scale scene, pixels having only
smallest b-scale values are selected as candidate TIB patterns.

The fraction of object is denoted by FOk,ν(c) and indicates

the fraction of the ball boundary occupied by a region which

is sufficiently homogeneous with c. FOk,ν(c) is defined as

FOk,ν(c) =
∑e∈Bk,ν(c)−Bk−1,ν(c)Wψ(|f(c)− f(e)|)

|Bk,ν(c)−Bk−1,ν(c)|
(2)

where |Bk,ν(c) − Bk−1,ν(c)| is the number of pixels in

Bk,ν(c)−Bk−1,ν(c) and Wψ is a homogeneity function [2].

In all experiments, we use a zero-mean un-normalized Gaus-

sian function for Wψ. As it is readily seen that the size of a

local structure is estimated using appearance information of

the grey level images, i.e., region-homogeneity criterion, b-

scale scenes contain rough geometric information. A detailed

description of Wψ and FOk,ν are presented in [2].

2) Candidate Identification via Scale Selection: In princi-

ple, b-scale partitions the scene into several levels based on

the size of local structures. Note that locally adaptive scale

in regions with fine details or in the vicinity of boundaries is

small, while it is large in the interior of a large homogeneous

objects. Since it is observed that TIB patterns constitute only

small b-scale values, it is highly reasonable to consider pixels

with small b-scale values as candidate TIB patterns, and

discard pixels with high b-scale values. Figure 3 shows a

b-scale scene (a) and b-scale scenes with selected scales

(i.e., smallest scales) (b). This selection process, namely

selecting only smallest scales from b-scale image, does not

only guarantee choosing areas with TIB patterns as candidate

regions, but as its simplest, it allows elimination of large

homogeneous objects from candidate selection procedure.

III. FEATURE EXTRACTION

TIB pattern has a complex shape structure, consisting of

curvilinear structures around which nodular structures exist

(i.e., a budding tree). In order to have sufficient discrimina-

tory power to distinguish TIB patterns, there is a need to

have representative features characterizing shape and texture

of TIB patterns efficiently. To achieve this, we propose to use

shape index and statistics over local gradients in different

thresholds to obtain intrinsic shape descriptors for a given

local window around each candidate pattern. In addition,

we use steerable features to capture local appearance in-

formation. While shape features characterize the curvilinear

structures (via shape index) and small nodular structures (via

shape index and statistics over local gradients), steerable

features characterize background and foreground intensity
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variation with objects’ pose and size for a given local

window. These feature sets are described in the following

subsections.

Shape Index (SI): The shape index (SI) is a statistical

measure and used to define intrinsic shape of the localized

structure within the image [4]. SI values are encoded as a

continuous range of values between -1 and 1, with zero SI

indicates saddle-like local structures, +1 and -1 SI values

indicate umbilical minima and maxima (i.e., cap and cup,

respectively), and mid-points of the two half-intervals (+0.5

and -0.5) indicate concave and convex parabolic or line-like

structures (i.e., rut and ridge, respectively). SI can simply be

computed through principal curvatures (κ1,κ2) as follows:

SI=
2

π
arctan(

κ1+κ2

κ1−κ2
) ∈ [−1,1] (3)

where κ1 and κ2 are principal curvatures (κ1 ≥ κ2). As

suggested in [4], we obtain principal curvatures from the

eigenvalues of the local Hessian matrix (H) as:

H =

(

Lxx Lxy
Lyx Lyy

)

(4)

where Lxx,Lxy = Lyx, and Lyy are second order derivatives

of local image patch L .

Shape Statistics over Local Gradient (LGS): Gradient

fields can be used effectively to obtain statistical measures

for a given local window. For example, TIB patterns consist

of numerous small (or micro-) nodules nearby the main

curvilinear structure and those small structures have varying

opacities. One may obtain the location and distribution of

those small structures by simple thresholding which has been

popular in estimation for more than two decades [6], how-

ever, since the opacities are varying through different nodular

structures, it is challenging to find an optimum threshold

value. Therefore, instead of using one single threshold level,

we use n= 10 different threshold levels (λj) to obtain local

statistics of those structures in a hierarchical way, where

λj= 10j, 1≤ j≤ 10 [9]. Figure 4 shows an example threshold

selection process for four levels over a candidate TIB pattern

centered at c. The number of b-scale patterns over the local

region for each thresholding level and mean SI value over the

local region for each different threshold level are recorded as

discriminative features explaining intrinsic shape statistics.

Although n and λj are chosen emprically based on the

observations of shape and textural characteristics of normal

and TIB patterns during the training, one may propose to

use cross-validation, control of the global and local false

discovery rate, and uncertainty principles to decide those

parameters near-optimally [6].

Steerable Features: It has been well documented in the

literature that decomposition of images by using basis func-

tions localized in spatial position, orientation, and scale

(e.g., wavelets) are extremely useful in object recognition

and detection [7]. Since steerable filters are rotation and

translation invariant, they accurately represent the underlying

image structure [8]. In this study, we use steerable Deriva-

tive of Gaussian (DoG) filters to decompose local regions

Fig. 4. Local gradient maxima above different thresholds are found.

around each candidate into several oriented basis. These

basis are used as features in pixel-wise classification for TIB

identification. We extract steerable features (i.e., directional

derivatives) from 1 scale and 6 different orientations. For

a comparison, we also extract Grey-Level Co-occurrence

Matrix (GLCM) based features [10], which are shown to be

useful in discriminating and quantifying patterns pertaining

to lung diseases. For each local patch, we extract 18 GLCM

based features including autocorrelation, contrast, entropy,

variance, dissimilarity, homogeneity, and extended features

of those.

For a local region centered at a pixel c of a candidate TIB

pattern, we extract 1 feature as a SI value of the pixel c,

3 features as the maximum, minimum, and mean SI values

over the local region, 10 features as mean SI values (due

to 10 thresholding level from statistics of local gradients),

and 10 features as the number of selected (smallest) b-

scale patterns over the local region, resulting in a total of

24 features (SI+LGS). Steerable wavelet feature extraction

scheme leads to its features having the dimensions of 486,

1014, and 1734, if local window of sizes 9x9, 13x13, and

17x17 are used, respectively.

IV. EXPERIMENTAL RESULTS

Laboratory confirmed 39 CTs of HPIV infection and 21

normal lung CTs were collected for the experiments. The in-

plane resolution is affected from patients’ size and varying

from 0.62mm to 0.82mm, and the slice thickness of the

scans is 5mm. After data collection, an expert radiologist

(DJM) carefully examined the complete scans and labeled

the regions as normal or TIB opacity with the number of

respective regions shown in Table I. Next, corresponding

b-scale scenes are computed from labeled grey level CT

images. Scale selection procedure is applied to the b-scale

scenes, and all the pixels within the ground-truth (labeled

regions) are used to extract features over local patches of

size |L | =9x9, 13x13, or 17x17. Those extracted features

(labeled as normal and TIB) are then used to train SVM

classifier. We use two-fold cross validations to make optimal

use of available data.

Evaluation of the CAD algorithm includes a performance

measure of a computer output determined alone from ap-

propriate detection/classification. Our observations show that

only 21%-40% of the segmented lung volume is chosen as

candidate TIB patterns. This interval is subject to change

based on the severity of the diseases (i.e., more TIB patterns).

For normal patients, for instance, the percentage of the
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TABLE I

NUMBER OF LOCAL PATCHES USED IN THE EXPERIMENTS.

Patch Size L TIB Normal

9x9 50456 42924

13x13 24184 20572

17x17 14144 12032

TABLE II

ACCURACY (Az) OF THE CAD SYSTEM WITH GIVEN FEATURE SETS.

Features Dimension Patch Size L Az

Proposed features 6 x17x17 + 24=1760 17x17 0.8680

Proposed features 6x13x13 + 24=1038 13x13 0.8995*

Proposed features 6x9x9 + 24=510 9x9 0.8800

SI & LGS 24 17x17 0.7620

SI & LGS 24 13x13 0.7510

SI & LGS 24 9x9 0.7230

Steer. Wave. 6x17x17=1734 17x17 0.7571

Steer. Wave. 6x13x13=1014 13x13 0.7298

Steer. Wave. 6x9x9=486 9x9 0.7410

GLCM 18 17x17 0.7163

GLCM 18 13x13 0.7068

GLCM 18 9x9 0.6810

candidate regions is smaller than the patients with infections

(21% < 40%). Having said that, local scale might perhaps

be used as a quantitative measure validating the sensitivity

and specificity of the classification rates.

Table II shows the performance of the proposed CAD

system as compared to other feature sets. The performances

are reported as the areas under the ROC curves (Az). Note

that we also include SI & LGS features without combining

with steerable wavelet features. Even being used alone, SI &

LGS features show superior performance to other methods

while the dimension of the feature set is only 24. The best

performance is obtained with the proposed method which

combine SI & LGS with steerable wavelet features. In what

follows, we select the best window size for each feature set

and plot their ROC curves all in Figure 5. To have a valid

comparison, we repeat candidate selection step for all the

methods, hence, the CAD performances of compared feature

sets might perhaps have lower accuracies if the candidate

selection part is not applied. To show whether the proposed

method is significantly different than the other methods, we

compared the performances through evaluation paired t-tests,

and the p-values of the tests are summarized in Table III.

Note that statistically significant changes are emphasized

by in two different statistical levels, p < .05 and p < .01,

respectively.

TABLE III

P-VALUES ARE SHOWN IN CONFUSION MATRIX.

p-Confusion SI& LGS Steer.Wave. GLCM

Proposed Method <0.01 <0.01 <0.01

SI& LGS – <0.05 <0.01

Steer.Wave. – – <0.01
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Fig. 5. Comparison of CAD performances via ROC curves of different
feature sets.

V. CONCLUSION

In this paper, we have proposed b-scale based binary clas-

sification approach for automatic TIB pattern detection from

lung CTs. The proposed system integrates 1) fast localization

of candidate TIB patterns through b-scale filtering and scale

selection, and 2) combined shape and textural features to

identify TIB patterns. Experimental results using 39 labora-

tory confirmed viral bronchiolitis (parainfluenza) CTs and 21

normal lung CTs achieved the performance of Az=0.8995.

To further eliminate the false positive fraction, one may train

boosting classifiers to select strong features rather than rare

and weak features prior to SVM classification. As a future

extension of this study, one may consider using a feature

selection method to explore the effect of local window size

and optimal feature selection. In this paper, we have not

addressed the issue of quantitative evaluation of severity of

diseases by expert observers. This is a challenging task for

complex shape patterns such as TIB opacities, and subject

to further investigation.
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