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Abstract— In this paper we present a visual processing system
for bionic eye with a focus on obstacle avoidance. Bionic
eye aims at restoring the sense of vision to people living
with blindness and low vision. However, current hardware
implant technology limits the image resolution of the elec-
trical stimulation device to be very low (e.g., 100 electrode
arrays, which is approx. 12 × 9 pixels). Therefore, we need
a visual processing unit that extracts salient information in
an unknown environment for assisting patients in daily tasks
such as obstacle avoidance. We implemented a fully portable
system that includes a camera for capturing videos, a laptop
for processing information using a state-of-the-art saliency
detection algorithm, and a head-mounted display to visualize
results. The experimental environment consists of a number of
objects, such as shoes, boxes, and foot stands, on a textured
ground plane. Our results show that the system efficiently
processes the images, effectively identifies the obstacles, and
eventually provides useful information for obstacle avoidance.

I. INTRODUCTION

Blindness is one of the most debilitating conditions that
severely damages human’s perception capability. For in-
stance, there were 50,000 people legally blind in Australia in
2004, with numbers expected to increase to 87,000 by 2024
with the aging population [5].

There are many useful devices on the market to assist indi-
viduals with impaired vision. However, there is a lack of the
implant systems that directly facilitate the human visual ca-
pability. In the past years, the fastest-growing biotechnology
allows us to implant bionic devices to human patients, and
further facilitate the patients to control their damaged sensory
organs. Therefore, bionic eyes were recently proposed by a
number of research institutes to restore human vision system.

A bionic eye consists of a camera that captures realtime
videos and a microchip implanted in the retina. Certainly,
the implant hardware is the most important component in
the bionic eye, and the clinical surgery is the most critical
process towards the success of these bionic eyes. However,
current hardware technology limits the image resolution of
the implant device to be extremely low. A 100 stimulation
electrode array implant, which amounts to approximately
12 × 9 pixel resolution, would be the most reasonable and
affordable device in the market for a number of years.
Therefore, it necessitates a visual processing unit is to
provide useful information for the microchip.

Ashley Stacey is with College of Engineering and Computer Science,
Australian National University, Canberra, ACT Australia 2601. Email:
ashley.stacey@anu.edu.au

Yi Li and Nick Barnes are with National Information and Communication
Technology Australia (NICTA) and College of Engineering and Computer
Science at the Australian National University, Canberra, ACT Australia
2601. Email: {yi.li, nick.barnes}@nicta.com.au

Fig. 1. Our visual processing system for extracting salient obstacles in
images. On top of the helmet is a camera that captures videos that are
processed by a laptop on the backpack. The results are visualized using the
Emagin z800 head mounted display.

Among all the major considerations of bionic vision
systems, navigation is a major milestone in the development
process. Navigating in unknown environments by avoiding
obstacles is very important in everyday life. However, this
task becomes very challenging for bionic eye because a
large amount of information is lost during the information
processing and visualization in such a low resolution implant.

To assist bionic eye users to navigate in such a low
resolution device, we must extract useful information from
the environment to display. In our system, we attempt to use
the salient information to identify objects in an unknown
environment. Salience has been studied for a decade in
computer vision research. Traditionally, this is considered as
one of the fundamentals in the biologically-inspired vision.
Most existing methods model this as a bottom up process
[9]. Low level visual cues, such as color and filter outputs,
are combined together to create a higher level aggregation.

In our experiments, we placed a number of objects with
different shapes, colors, and textures to simulate the obstacle
avoidance process in an indoor environment. Our test envi-
ronment ([1]) include white laced curtains and textured floor.
The goal of the visual processing system is to identify the
salient obstacles in the images captured by cameras.

Fig. 1 shows the implementation of our system. This
portable system includes a camera (on top of the helmet),
a laptop (in the backpack), and a head mounted display. The
system is fully powered by the batteries in the backpack.

This paper is organized as follows: Sec. II discusses a
few related topics, Sec. III presents our information pro-
cessing procedure, Sec. IV provides experimental examples
that demonstrate the robustness of the system in an indoor
environment, and Sec. V concludes the paper.
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TABLE I
SYSTEM CONFIGURATION.

Laptop 2.2 GHz Dual Core CPU with 2Gb memory
HMD Emagin Z800 Visor

Webcam Microsoft High Definition LifeCam.
System Ubuntu 10.04

Dev Platform Eclipse and OpenCV

II. RELATED WORK

A number of bionic eye systems are being developed
world wide ([15], [7], [14]). These groups primarily focus on
the implant modules. In our project, we attempt to develop
novel visual processing systems to assist the implant module
based on state of the art computer vision algorithms. For
instance, extracting salient information is very helpful for
low resolution device.

Computing salience is a major component of the areas of
the biologically inspired computer vision. The surrounding
world contains a tremendous amount of visual information.
This is often regarded as a mediating mechanism [10]
involving competition between different aspects of the scene.

Based on the work of Koch [3], Itti proposed a saliency-
based visual attention model for scene analysis [9]. In
this work, visual input is first decomposed into a set of
topographic feature maps which all feed into a master
“saliency map” in a bottom-up manner. This method has
been proved to be an elegant map from biological theories
to computational implementation. However, this approach is
unable to match the eye tracking data well [11].

By considering the attention process as a signal processing
problem, it is natural to use filters as simulation of the
psychological mechanism [13]. For instance, subband filters
[12] are widely used for this purpose. Bruce et al. [2]
attempted to use information theory to define visual saliency
and the fixation behavior. Other researchers ([8], [16]) argue
that natural statistics should play an important role in the
attention process.

Judd et al. [11] and Einhuser et al. [4] recently suggested
that this attention problem should be tackled by taking both
the low level features and the high level detectors into
account. Human eye tracking data were then used for the
training. In their work, human, face, and car detection were
used to improve predicting human fixations. However, this
method is computationally expensive in bionic eye.

III. SYSTEM IMPLEMENTATION

In this section, we first present the system configuration,
then we present the flow chart of the salience algorithm, and
finally we describe our processing procedures.
A. System requirement

As stated in the introduction, our system consists of three
major components. This configuration is listed in Table I.

B. Saliency algorithm

Fig. 2 briefly describes the computation steps of the
salience algorithm proposed by [6]. It first computes the

Fig. 2. Flowchart of the saliency extraction algorithm.

sparse features of the images, which are the linear weights
of the sparse coding basis functions, and then uses the
incremental coding length to compute the saliency.

We implemented this algorithm in C++ using OpenCV1.
The processing speed is approximate 0.2 second per frame.
The profiler shows that the computation of the sparse features
takes 80% of the total runtime.

C. Processing procedures

To process the images captured by the webcam, we
perform the following operations.

1) Resize the image to 360× 240 (Fig. 3, first row);
2) Compute the saliency map (Fig. 3, second row);
3) Binarize the saliency map to create the foreground

image (Fig. 3, third row);
4) Resize the foreground image and the saliency map to

12×9, and mask the saliency map using the foreground
image in the reduced resolution.

5) Display the masked salience map (Fig. 3, forth row).
Our results are low resolution images that contain only

foreground objects. Each pixel is proportion to the probabil-
ity of the salience (importance) of being a foreground object.

IV. EXPERIMENT

In this section, we show that our system is capable of
processing images and extracting salient foreground objects
effectively. First, we demonstrate the effectiveness of the
system by showing results for the objects in videos. Second,
we compute the accuracy of the detection module and show
the robustness of the system in an indoor environment.

We choose 12 objects that are commonly used in
home/indoor environments every day. As listed in Fig 3,
these objects are of different shape, texture, color, and other
physical properties. All objects were placed in the experi-
mental environment described in [1]. The subjects carried
the system proposed in Sec. III in the environment, which
captures videos and processes information.

The objects were placed on the ground. This is very
challenging because the ground has textures with similar
colors, and the areas between wall (curtain in our case)
and the ground is challenging to handle. Please note that in
this case there is no significant difference between moving
objects and moving the camera, because the algorithm does
not take optical flow into account.

In total, we captured 10 videos with 600 images per
video. The capturing frame rate of the webcam is 24 frame

1http://opencv.willowgarage.com/wiki/
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Shoe Metal box Sunscreen Paper box Stand Helmet

Mug Metal box CD Box Pen CD Player Rice
Fig. 3. Experimental setups and examples. We choose 12 common objects, which include a shoe, a metal box, a sunscreen, a paper box, a stand, a
helmet, a mug, a metal box, a CD box, a pen, a CD player, and a bag of rice. The objects were placed on the textured ground. The first/fifth row: captured
images; The second/sixth row: salience maps; The third/seventh row: foreground images; The four/eighth row: low resolution display;

per second. However, we only process one every 4 frames
because the time for processing each image is 0.2 second.
A. Example results

We show the experimental configuration and the example
images of the objects in Fig. 3. Since the images were
captured while the subjects were walking through the en-
vironment, the images were taken from different angles and
directions, and motion blur is unavoidable. The texture on
the carpet posed additional difficulties because the sizes,
orientations, and colors of the textured strips were different.

Fig. 3 shows that our system successfully captured the
salient objects in the scene. The low resolution display
(forth/eighth row in Fig. 3) successfully handles the textures
of background and the intersection regions between walls and
the ground, and eventually effectively pinpoints the locations
of the obstacles on the ground plane.

B. Results on videos

Ideally, the low resolution salience must be consistent in
the same video. We show such an example in this section.
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Frame 1 Frame 9 Frame 17 Frame 25 Frame 32 Frame 35
Fig. 4. This example shows a number of frames in the same video.

Fig. 4 displays a number of frames in the same video when
the subject is passing by a shoe. One can see that the shoe
can reliably be detected for all the frames and the system
performance is robust to the viewpoint change.

C. Robustness analysis

We compute the robustness of the system in this section.
Define the hit rate of the algorithm as the number of the
successful detected objects over the total number of frame,
we achieved approx. 96% accuracy.

The failures are mostly from the images that do not contain
images (Fig 5). In this case, the most salient background
regions may be mistakenly identified as foreground images
and created false positive detections.

V. CONCLUSION AND DISCUSSION

We present a visual processing system for bionic eye in
this paper. This fully portable system includes a camera, a
laptop, a state-of-the-art saliency detection algorithm, and
a head-mounted display. Our results show that the system
effectively identifies these obstacles and eventually provides
useful information for navigation tasks. Our algorithm is
designed for the 100 electrode array implant, and can be
implemented efficiently using hardwares.

Fig. 5. A failure example.

In the future, a 1,000 stimulation array will be in the
market. This enables the users to identify regions in details.
Our algorithm would serve as an effective component for
finding salient regions for image zooming and stablization.
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