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Abstract— Malaria, caused by a blood parasite of the genus
plasmodium, kills millions of people each year. According to the
World Health Organization, the standard for malaria diagnosis
is microscopic examination of a stained blood film. We have
developed a two-stage algorithm for the automatic detection of
plasmodia in thick blood films. The focus of the first stage is
on high detection sensitivity while accepting high numbers of
false-positive detections per image. The second stage reduces
the number of false-positive detections to an acceptable level
while maintaining the detection sensitivity of the first stage. The
algorithm can detect plasmodia at a sensitivity of 0.97 with a
mean number of 0.8 false-positive detections per image. Our
results indicate that the proposed algorithm is suitable for the
development of an automated microscope for computer-aided
malaria screening.

I. INTRODUCTION

Malaria is an infectious disease, with a high prevalence
in tropical and subtropical regions, caused by a blood par-
asite of the genus plasmodium. It is transmitted by the
bite of a female anopheles mosquito. Approximately 243
million cases led to nearly 863.000 deaths in 2008 [1].
Four species of the genus plasmodium can infect humans
and cause malaria: plasmodium falciparum, plasmodium
vivax, plasmodium ovale, and plasmodium malariae. The
most serious forms of malaria are caused by plasmodium
falciparum. According to the World Health Organization
(WHO), microscopic examinations of stained blood films are
the ”‘gold standard”’ for malaria diagnosis [2]. Two kinds of
blood films are used for malaria diagnosis: thin and thick. A
thick film is always used to search for malaria parasites as it
consists of many layers of blood cells and allows examining
relatively large amounts of blood. However, often the parasite
species (e.g. plasmodium vivax) can not be confirmed based
solely on a thick film. Hence, usually a thin film is prepared
for the characterization of the species of parasites that have
been detected in the thick blood film. According to the
WHO, routine examination of thick films is based on the
examination of at least 100 microscopic fields of view at high
magnification (100× objective, 10× ocular). This process
is tedious and tiring for laboratory assistants and requires
special training and substantial expertise. It also seems to be
error-prone, as studies have shown that high intra- and inter-
observer variabilities exist in the resulting parasite density
quantizations [3], [4], [5]. Therefore, computer-aided detec-
tion (CADe) systems are required that support the laboratory
assistants in the detection and counting of plasmodia in thick

blood films. In Figure 5 example plasmodia, cropped from
thick blood film images, are displayed.

Several approaches to the computer-aided detection
(CADe) of malaria, based on automatic microscopic detec-
tion and characterization of plasmodia in blood films have
been proposed in the last years. We provide an overview
of the most important articles in the following. A broader
overview of the state of the art can be found in a recent
review article by Tek et al. [6].

Diaz et al. [7] proposed an approach for quantification
and classification of erythrocytes infected with plasmodium
falciparum. Their approach has a segmentation and a clas-
sification stage. In the segmentation stage, erythrocytes are
identified and segmented by means of luminance correction,
pixel-classification, and an inclusion-tree representation. In
the classification stage, infected erythrocytes are identified
and different infection stages are characterized.

Le et al. [8] presented a semi-automatic approach for
the quantification of erythrocytes infected with plasmodium
falciparum in thin blood films. Their approach is based on an
analysis of the co-localization of detected erythrocytes and
potential plasmodia. Even though their work is based on thin
films, which are especially suited for species differentiation,
their work does not cover this aspect.

Tek et al. [9] proposed a two-stage approach for detection
of plasmodia in thin films. Bayesian pixel-classification is
employed to find plasmodia candidates in the first stage.
A kNN classifier based on shape, histogram, and statistical
moment features is used in a second stage to reduce the
number of false-positive detections.

Additional approaches for the detection of plasmodia in
thin films have been proposed by Ross et al. [10] and Di
Ruberto et al. [11].

Plasmodia detection based on thick films is the recom-
mended standard proposed by the WHO and is approximately
ten times more sensitive than based on thin films [2]. Still,
only a single article, published recently by Frean [12], covers
the automatic detection of plasmodia in thick films. Frean
proposes a straight-forward detection approach based on
open-access software that is able to estimate medium to
high parasite densities with good accuracy, but is not suited
for lower plasmodia densities (fewer than six parasites per
image).

In this work we present a novel approach to the automatic
detection of malaria parasites in thick blood films. Our
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work focuses on the detection of plasmodium falciparum
parasites as this species is responsible for about 80% of
all malaria cases and for about 90% of all malaria deaths.
Three growth stages of plasmodia can be found in peripheral
blood: trophozoites, schizonts, and gametocytes. However,
plasmodium falciparum infections are special because sch-
izonts are usually not, and gametocytes are only rarely seen
in peripheral blood. Therefore, we focus on the detection of
trophozoites. Our approach tackles the problem of accurate
detection independent of plasmodia density.

The rest of this paper is organized as follows. We provide
descriptions of materials and methods in Sections II and III,
followed by experiments and results in Section IV. We close
with a discussion in Section V.

II. MATERIALS

We have acquired 256 1000× 1000 pixel Giemsa-stained
thick blood film images at high magnification using a 100×
Zeiss oil immersion objective with an optical aperture of 1.3,
attached to a Zeiss Axio Imager microscope, and a color
CCD digital camera. Care was taken to ensure consistent
lighting conditions and white balance for all images. Fig-
ures 2 shows part of a sample image form our data set.
We have randomly split this image set into two subsets
(128 images each) for training and testing. The training set
is used for algorithm development, parameter adjustment,
and training of a classifier. The test set is solely used for
evaluation of the detection performance.

III. METHODS

Our detection algorithm has two stages. The focus of
the first stage (plasmodia detection) is on high detection
sensitivity, with the drawback of relatively high numbers
of false-positive detections. The second stage (false-positive
reduction) employs a support vector machine (SVM) classi-
fier to reduce the number of false-positive detections to an
acceptable level while maintaining the detection sensitivity
of the first stage.

A. Plasmodia detection

In this stage, plasmodia candidates are detected with a
focus on high sensitivity while accepting potentially low
specificity. This means, the algorithm is designed to miss no,
or only very few, plasmodia with the potential drawback of
many false-positive detections. As stated in the introduction,
the detection focuses on the trophozoite growth stage of
plasmodium falciparum parasites. Trophozoites appear as
small rings or parts of rings with one ore two chromatin dots.
Besides plasmodia, the only blood components that contain
chromatin are leukocytes and platelets. Therefore, the first
step of our detection algorithm is to find objects containing
chromatin. We have identified the proportion of the green and
the blue component of a blood film image as a very good
feature to identify objects containing chromatin in Giemsa-
stained blood films. It is not only a highly discriminative
feature but also almost independent of differences in illumi-
nation and staining intensity. Let Igreen(x, y), and Iblue(x, y)

denote the green and blue channels of the input image. We
transform the color input image into a monochrome image
I(x, y), that highlight objects containing chromatin, based
on Equation 1.

I(x, y) = arctan

(
Igreen(x, y)

Iblue(x, y)

)
(1)

In the resulting monochrome image I(x, y) objects with
chromatin have dark, and objects that do not contain chro-
matin have bright gray values. The next step of the algorithm
is to separate potential plasmodia from other objects that
contain chromatin: leukocytes, platelets, and artifacts (such
as splintered parts of leukocytes). Plasmodia can be separated
from leukocytes based on their characteristic shape. They can
be separated from platelets based both on their characteristic
shape and staining intensity. Separating plasmodia from
artifacts is more difficult and, therefore, is not tackled in
this stage of the algorithm. We found the black-top-hat
morphological operator [13] to be an excellent mechanism to
separate plasmodia from both leukocytes and platelets. The
black-top-hat operator is defined as a morphological closing
(dilation followed by erosion) of an image followed by the
subtraction of the closed image from the input image. We use
the generalization of this morphological operator from binary
to monochrome images, and a special non-flat structuring
element to achieve a separation of plasmodia from leukocytes
and platelets. We have found a non-flat structuring element
that represents a paraboloid to be very well suited for this
task. The slope of the paraboloid is chosen to be one, and
the radius (which is based on the typical size of plasmodia)
to be seven pixel. These parameters are fixed for our system
and need to be adjusted only in case of a change in pixel size
(i.e. when the camera or the objective is changed). Figure 1
illustrates the paraboloid structuring element.

Fig. 1. Illustration of the non-flat structuring element representing a
paraboloid. In this case the paraboloid has a radius of nine and a slope
of one pixel.

The black-top-hat operator is followed by a threshold
operation. Due to the independence of the proportion of the
green and the blue component with regard to illumination
and staining intensity, we found a global, fixed threshold
sufficient for this step. We apply a morphological dilation
with a circular, flat structuring element to merge neighboring
blobs in the binary image resulting from the threshold
operation. The radius of the circular structuring element is
chosen to equal the radius of the structuring element used
in the black-top-hat operator. The final step of this detection
stage is the extraction of plasmodia candidate positions by
using a simple connected-components labeling algorithm to
extract objects from the binary image. The centroids of
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the extracted objects are regarded as plasmodia candidate
positions. Figures 2 to 4 illustrate the major steps of the
plasmodia candidate detection stage.

Fig. 2. Part of a sample input image showing two plasmodia.

Fig. 3. The input image is converted to a monochrome image that highlights
objects containing chromatin.

B. False-positive reduction

Because of the focus on high sensitivity, many plasmodia
candidates detected in the previous stage are false-positive
detections. Hence, a false-positive reduction step is applied
as a second stage of the detection algorithm. The basic idea
of this stage is to crop a small region of interest (ROI) for
each plasmodia candidate from the input image, to extract a

Fig. 4. A black-top-hat operator is applied to the monochrome image to
identify plasmodia candidates.

set of features from the ROI, and to classify the ROI based
on the feature set as ”‘plasmodium”’ or ”‘artifact”’. More
precisely, we crop ROIs of size 80 × 80 pixel centered on
the plasmodia candidate positions from the input image. We
extract a large set of features, including statistical moment
features, texture analysis features, and color features. The set
of statistical moment features contains four central moments
(mean, variance, skewness, and kurtosis), Hu’s set of seven
invariant moments [14], and the 49 Zernike moments of
orders up to 12 [15]. The texture features include Haralick’s
13 co-occurance matrix features [16], Unser’s 18 sum and
difference histogram features [17], Chen’s 16 statistical geo-
metrical features [18], and five features proposed by Young et
al. [19] that describe the distribution of chromatin in the ROI.
The color features include 60 features representing a 60-bin
histogram of the hue channel of the ROI, and two features
described by Kovalev et al. [20] that represent cyan shifts in
the ROI. In total, the feature space has 174 dimensions which
requires a selection of a feature subset to avoid the curse of
dimensionality. Furthermore, all features are normalized to
have zero mean and a standard deviation of one. We select
an optimal feature subset in a two-stage process. First, we
apply an univariate ranking to keep only the 60 features that
have the highest univariate discriminative power. Then we
use a genetic algorithm (GA), as suggested by Vafeie and
De Jong [21], for automatic selection of an even smaller
feature subset. The main issues in applying a GA to a specific
problem are to select a reasonable objective function as well
as an adequate representation of candidate problem solutions
(individuals). An appropriate and simple representation of
individuals for the problem of selecting a good subset from
a set of N features is a binary string of length N . If the
bit at position i, with 0 ≤ i ≤ N is set to one, the ith
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feature is included in the subset represented by the respective
individual. As an objective function we use the area under the
ROC curve obtained from the classification with the selected
feature subset. To avoid a feature selection bias, the selection
is based strictly on the training image set and not on the test
image set. Once a good feature subset is selected, a SVM is
trained based on this feature subset and the training data set
to solve the two-class classification problem of classifying a
ROI as ”‘plasmodium”’ or ”‘artifact”’. We use a SVM with
a radial basis function kernel with γ = 0.125, and a cost
factor of C = 1.0 for this task.

IV. EXPERIMENTS AND RESULTS

We have evaluated the performance of our two-stage
plasmodia detection algorithm as follows. We extract a set of
266 80×80 pixel ROIs containing all annotated ground-truth
plasmodia present in the training data set. Furthermore, we
have applied the first stage of the detection algorithm to the
training data set to obtain a set of 612 80 × 80 pixel ROIs
showing false-positive detections. The training of the second
stage of the detection algorithm is based on these ROI sets.
Example ROIs are displayed in Figures 5 and 6.

Fig. 5. Examples of ground-truth plasmodia ROIs.

Fig. 6. Examples of false-positive detection ROIs (resulting from stage
one of the detection algorithm).

A feature set is extracted from each ROI, and an optimal
feature subset is obtained as described in the previous
section. Then the SVM is trained based on the feature
subsets of the 266 ground-truth plasmodia and the 612 false-
positive detections extracted from the training data set. The
evaluation of the detection performance is based on the
test data set. The first stage of the detection algorithm is
applied to all images of the test set to obtain plasmodia
candidate positions. Each plasmodia candidate is represented
by a feature vector extracted from a ROI centered on the
detected position and classified using the SVM. Plasmodia
candidates that are classified as ”‘artifact”’ are considered
as false-positive detections and discarded. The remaining
candidates are considered as plasmodia. The ground-truth
segmentations of the test data set are used to identify each
detection as true-positive (TP) or false-positive (FP). The
true-positive rate (TPR), also called the sensitivity, and the
mean number of false-positive detections per image (FPI)
are calculated based on these values. We have obtained pairs
of TPR and FPI values by using different values for the

threshold parameter of the first detection stage. The TPR and
FPI pairs are plotted as a free-response receiver operating
characteristic (FROC) curve in Figure 7. To investigate the
effects of the false-positive reduction stage, we have also
plotted TPR and FPI pairs for the same setup, but with
disabled false-positive reduction. At a reasonable sensitivity
of 0.97, our algorithm operates at 3.2 FPI without false-
positive reduction, and 0.8 FPI with false-positive reduction.

V. DISCUSSION

We have developed a two-stage algorithm for the au-
tomatic detection of plasmodia in thick blood films. Our
work focused on the detection of plasmodium falciparum
parasites as this species is responsible for about 80% of all
malaria cases and for about 90% of all malaria deaths. In
contrast to the state of the art, our approach tackles the
problem of accurate plasmodia detection in case of low
plasmodia densities (less than five plasmodia per image). Our
results show that high plasmodia detection sensitivity (0.97)
combined with low numbers of false-positive detections per
image (0.8) can be achieved. This indicates that our approach
is suitable for the development of an automated microscope
for computer-aided malaria screening. According to WHO
guidelines, 100 high magnification fields of a thick blood
film must be examined for malaria detection. This tiring
and time consuming process could be reduced to a less
time consuming examination of the plasmodia candidate
detections ROIs returned by our algorithm. There is room for
improvements in both stages of our algorithm. We expect that
further reductions of the number of false-positive detections
are possible and will focus our research on better features
for the discrimination of plasmodia and artifacts. A major
goal is also the acquisition of larger training and testing data
sets for improvements in the robustness of our approach.
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