
VirtualShave: automated hair removal from digital dermatoscopic images

M. Fiorese, E. Peserico, A. Silletti – Univ. Padova, Italy – melanoma@dei.unipd.it

Abstract— VirtualShave is a novel tool to remove hair
from digital dermatoscopic images. First, individual hairs are
identified using a top-hat filter followed by morphological
postprocessing. Then, they are replaced through PDE-based
inpainting with an estimate of the underlying occluded skin.
VirtualShave’s performance is comparable to that of a human
operator removing hair manually, and the resulting images are
almost indistinguishable from those of hair-free skin.

I. INTRODUCTION

The presence of hair represents a common obstacle in
the dermatoscopic analysis of small skin lesions such as
melanocytic naevi, both in the case of visual inspection by
a dermatologist through a dermatoscope and in the case of
automated analysis of a digital image. This is true even when
hair is relatively sparse and occludes only a small fraction of
the lesion’s surface. In the case of visual inspection sparse
hair disrupts the evaluation “at a glance” of the lesion’s
texture patterns. In the case of automated systems it can
drastically alter the measurements of the lesion’s size, shape,
colour, and texture, completely ruining the analysis [9].

Shaving is an obvious solution – but it has drawbacks.
First, it is time consuming, often far more than the lesion’s
visual inspection and/or digital image acquisition. Second,
shaving tends to irritate the skin, creating a diffuse alteration
of the colour of the whole lesion which may disrupt its
analysis to an even greater extent than the initial hair.

An alternative solution that can be more effective when
operating on digital images with sparse hair (whether the
image is to be evaluated by a dermatologist or by an
automated system) is to replace the hair pixels with a
reasonable estimate of the underlying skin - an operation
named inpainting. The two main tasks are then a) hair
segmentation – i.e. classification of every pixel of the image
as either hair or skin and b) inpainting – i.e. replacement of
hair pixels with an estimate the underlying occluded skin. A
crucial, but often disregarded, point is that what constitutes
a “good” inpainting strongly depends on the application: if
the image is to be examined by a human operator the ideal
choice is usually an attempt to match the colour and texture
of the neighbouring non-occluded skin, while sophisticated
automated analysis tools may fare better if occluded pixels
are correctly flagged as “unknown”. This paper presents
VirtualShave, an automated hair detection and removal tool,
and an evaluation of its effectiveness.
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II. RELATED WORK

A number of hair-removal tools to process digital images
can be found in the literature. DullRazor [9] uses a top-hat
operator [19] to identify dark hair structures. Hair is then
replaced with non hairy pixels. [16] performs a top-hat to
retrieve the hair from grayscale images and morphological
operations to remove false positives. Image inpainting is
based on Perona’s and Malik’s diffusion PDE [16]. [20]
instead uses Schmid’s algorithm [12] to detect hair and
then a RANSAC-based curve-fitting procedure [7] to refine
the results and join the broken hair segments. Inpainting is
example-based [4]. [1] recently (at the time of this writing
the paper is still in press) proposed a Derivative of Gaussian
(DoG) to detect hair, combining it with the fast marching
image inpainting technique proposed by [3].

One serious deficiency most of these papers share is the
lack of a rigorous quantitative evaluation of the results. As
mentioned in Section I, this involves evaluating the effective-
ness in both hair segmentation and inpainting. Segmentation
is typically (not only in this context) evaluated in terms of
the number of misclassified pixels compared to a “ground
truth” provided by a human operator. The only two papers
providing a quantitative evaluation of segmentation are [16]
and [1]. The first normalises this quantity dividing it by
the number of pixels classified as hair by the ground truth
(the assessment is not entirely positive). The second instead
normalises dividing by the number of pixels classified as
hair either by the ground truth or the hair-removal software
under test. As we shall see in Section IV in the case of
hair this methodology suffers from a serious deficiency.
[1] is the only paper providing a quantitative evaluation of
inpainting quality – a somewhat artificial measure based on
the inpainting’s distortion of several image parameters such
as contrast and entropy.

III. VIRTUALSHAVE

VirtualShave segmentation module (Subsection III-A) first
applies a top-hat operator to identify areas of high contrast
as hair candidates; then filters out through a decision tree
those candidates that do not satisfy certain morphological
conditions; and finally attempts to remove “breaks” between
multiple hair segments where hair almost match the colour of
the surrounding skin and thus went unrecognized by the top-
hat operator. VirtualShave inpainting module (Subsection III-
B) is PDE-based and aims to maximize the quality of visual
inspection (see Section I above); alternatively it has the
option to mark all hair pixels with the same, “unknown”-
flagged colour. Figure 1 depicts the overall procedure.
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Fig. 1. VirtualShave segmentation module applies a top-hat operator, filters
candidates through a morphology decision tree, and finally attempts to repair
gaps in hair. It then applies PDE based inpainting.

A. Segmentation

a) Top-hat: The top-hat operator detects contrasted
objects on non-uniform backgrounds [14]. Closure-based
top-hat subtracts from the original image its closure [19]:

T = |Ibw − {Ibw · E}| (1)

where Ibw is a grayscale image, E is the structuring element
and · denotes the closure operation.

VirtualShave utilizes a modified closure-based top-hat
operator, where 8 structuring elements produce an equivalent
number of closed images which are then merged in a unique
image. The structuring elements (fig. 2) are 13 pixel-long
straight lines. Each line has a direction (0◦, 45◦, 90◦, 135◦)
and a thickness (1 or 2 pixels).

Fig. 2. 8 structuring elements for closure operation

Tr, the closure-based top-hat image of the red channel is
computed as:

Tr =

∣∣∣∣∣∣Ir − max
d ∈

{
0◦, 45◦, 90◦, 135◦

}
t ∈ {1, 2}

(Ir · Ed,t)

∣∣∣∣∣∣ (2)

where Ir and Ed,t are respectively the red channel of
the image I and the structuring element with direction d
and thickness t. A binary image Mr is then obtained by
thresholding:

Mr(x, y) =

{
1 if Tr(x, y) < th
0 otherwise (3)

where th is the Otzu threshold, minimizing the histogram
intra-class variance between bright and dark pixels [10],[17]
(in a nutshell, we optimally “split” the bi-modal histogram
of the grayscale image Tr into two classes). Equations 2 and
3 can be applied to the green and blue channels as well,
obtaining respectively Mg and Mb. The final hair mask M
(fig. 3) is the logical intersection of the 3 masks:

M = Mr ∩Mg ∩Mb (4)

Unfortunately, top-hat relies only on local contrast [14]
and thus often misclassifies pixels. Dark areas of skin can
be classified as hair, while thin long hairs can be sometimes

Fig. 3. Raw mask M as computed in 3 and 4 by thresholding the modified
top-hat operator. Small spurious hairs are detected, while long hairs are
heavily fragmented.

classified as skin when overlapping e.g. a melanocytic lesion.
The next two steps attempt to correct this problem.

b) Decision tree – false positive removal: A connected
region R of M is a set of connected hair pixels. Ideally,
a region R would represent a single hair or perhaps a few,
partially overlapping hairs. Denoting for each region by A
and P its area and perimeter, and by Ac and Pc those of its
convex hull, we define the Density, Sphericity and Convex
Hull Sphericity of the region respectively as:

D =
A

Ac
S =

A

4πP 2
Sc =

Ac
4πP 2

c

(5)

D measures the “fullness” of the region, S and Sc its
roundness. Informally, hair regions will be long and thin and
thus will sport recognizable values of D, S and Sc.

Fig. 4. Region on the left has a high D value since A ≈ Ac. The region
on the right, on the opposite, has a very low D value since A ≤ Ac. Long
and curved hairs such as the one on the right are thus easily identified.

Each region traverses the decision tree depicted in figure
5. The tree rejects regions whose shape is geometrically
incompatible with hair, and removes them from M .

Fig. 5. The Decision Tree imposes geometrical coherence on hair regions.
The tree is an effective yet easy to implement tool to remove false negative
regions such as dots, superficial blood vessels and small pigmented areas.
The order of the nodes is important. For instance, a decision on D is not
reliable in the first stages since it could reject long and straight hair, which
has a low D value. The thresholds are determined empirically.
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c) Hair fitting – false negative removal: Thin and light
hair often results in a number of small regions, rather than
a long connected one. Figure 6 shows a frequent scenario,
where a long hair has been fragmented into 5 pieces.

Fig. 6. Dealing with thin bright hairs is difficult since their local contrast
is low and they can be confused with skin ripples.

For each region R, we compute the set of endpoints
{p1, p2...pn}. For each endpoint i, we then compute the
ρi and θi parameters of the approximation line (see the
Appendix). Each region is then described as:

R : {{p1, p2...pn} , {ρ1, ρ2...ρn} , {θ1, θ2...θn}} (6)

For each pair of endpoints of distinct regions RA and RB ,
we compute a “compatibility” value defined as:

CA,Bi,j = kd · N (0, σd)(||pAi − pBj ||)+
kθ · N (0, σθ)(||θAi − θBj ||) + kρ · (0, σρ)(||ρAi − ρBj ||) (7)

where kx, x ∈ {d, θ, ρ}, is the Gaussian normalization factor
1/
√

2πσ2
x; pAi and pBj are respectively the ith endpoint of

RA and the jth endpoint of RB ; and ρAi , ρBj , θAi , θBj are
respectively the ith and jth ρ, θ parameters of RA and RB .

A high value of CA,Bi,j means that RA and RB are likely
to be connected through pAi and pBj , and thus if CA,Bi,j >

(kd+kθ+kρ
3 ) M is adjusted by interpolating the connecting

region. In our experiments, σd = 40, σθ = 15, σρ = 20.

B. Inpainting

PDE-based inpainting [2] fills-in those hair occluded re-
gions extracted in M . The gray-scale value u(x) at position x
is interpolated according to Perona’s and Malik’s non-linear
diffusion equation [11], [15]:

∂u(x, t)
∂t

= div(c(x, t)∇u(x, t)) (8)

where div and ∇ are the divergence and gradient operators,
and c(x) is the scalar diffusivity at x:

c(x, t) =
1

1 + (‖∇u(x, t)‖/K)2
(9)

with K set empirically to 2.5. [16] provides a compact,
discrete iterative approximation for u(x, t) as:

u(x, t+1) = u(x, t)+
λ

|G(x)|
∑

x′∈G(x)

c(x′, t)∆u(x′, t) (10)

where G(x) is the set of pixel positions neighbouring x, λ is
a scalar empirically set to 0.75, and ∆ denotes the Laplacian
operator. u(x, 0) is simply the original pixel value, and we
stop after 50 iterations.

IV. EXPERIMENTAL EVALUATION

We tested VirtualShave on a set of 20 images (768 by 576
pixels, 24 bit rgb colour) acquired using Fotofinder [8] at
20X optical zoom. Each image depicts a melanocytic lesion
surrounded by healthy skin, in the presence of sparse hair.
VirtualShave required less than 3s per image on a cheap PC.

For the segmentation module, “ground truth” hair was
provided by a human operator who manually marked pixels
of the image as hair. VirtualShave misclassified pixels rep-
resented a total of 15.6% of all pixels classified as hair by
either VirtualShave or the ground truth. In contrast, a simple
implementation of DullRazor [9] misclassified more than 3
times as many pixels (47.1%).

These error values may appear high, considering the good
“apparent” quality of the inpainted images. In fact, they were
considerably higher than the numbers reported in [1] (even
those for the same DullRazor algorithm). However, one must
take into account that in images at this resolution a hair is
only a few pixels wide, and thus exhibits a very large ratio
of frontier pixels (hair pixels adjacent to non-hair ones) to
internal pixels (hair pixels surrounded by other hair pixels).
Thus, segmenting hair just a single pixel thicker or thinner
than the ground truth can produce a considerable “error” even
if the hair appears removed perfectly well.

To address this issue, we adopted the same method used
in [13] to assess the lowest error achievable in a particular
segmentation task: we had a second human operator segment
hair on each image, and evaluated his error against the
ground truth provided by the first operator. The second
human operator actually misclassified slightly more pixels
than VirtualShave. Thus, the error of VirtualShave’s seg-
mentation module is below the noise threshold introduced
by the particular morphology of hair – a high threshold that
casts doubts on the applicability of this standard evaluation
methodology when applied to the segmentation of hair.

Thus, we resorted to an alternative methodology, which
simultaneously allowed us to evaluate the quality of the
inpainting. We used a second set of 20 images of melanocytic
lesions, obtained through the same equipment, with the same
resolution, zoom etc. but lacking visible hair. Then, we had
six human operators, three of them dermatologists, identify
each as the 40 images as “naturally hairless” or “shaved
virtually”. The three dermatologists misclassified 13, 14 and
19 images. The remaining three operators misclassified 13,
17 and 22 images. Thus, removing hair through VirtualShave
produces images almost indistinguishable to the human eye
from unprocessed images of skin without visible hair.

V. CONCLUSIONS

VirtualShave is a fast, accurate tool to detect and re-
move hair from medium resolution dermatoscopic images of
melanocytic lesions. The best validation of its effectiveness is
that the images it produces are almost indistinguishable, even
by trained dermatologists, from those of naturally hairless
skin. It would be interesting to test VirtualShave on larger
collections of images – including very high resolution images
and images of other types of lesions.
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Fig. 7. The 20 test lesions, before and after hair removal.
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APPENDIX – COMPUTING ENDPOINTS, θ AND ρ

Let Rs be the skeleton of a generic region R [6]. A
pixel p ∈ Rs is a candidate endpoint if its eight-pixel-
neighbourhood comprises at most one other pixel in Rs
– otherwise p is an internal point. The set of candidate
endpoints is then refined. For each candidate, consider all
pixels in Rs within a distance of 15 pixels; if each of
these pixels has at most two pixels belonging to Rs in its
eight-pixel-neighbourhood, the candidate is an endpoint. The
procedure finally returns all the pixels marked as endpoints.

Given a region R and an endpoint p ∈ R, Rp ⊆ R is the
set of points whose distance from p is less than 20 pixels.
In a nutshell, Rp is the final “portion” of R. Let HRp(θ, ρ)
be the Hough transform [18] [5] of Rp, and let Θ and P be
the sets of the local maxima of HRp :

(Θ, P ) = arg max
θ,ρ

{
HRp

}
(11)

θ̂, ρ̂ are the average values of those local maxima:

θ̂ =
1
|Θ|

∑
θ∈Θ

θ ρ̂ =
1
|P |

∑
ρ∈P

ρ (12)

θ̂ and ρ̂ are the estimated parameters of the line passing
through p. The procedure returns θ̂ and ρ̂.
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