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Abstract— The extraction of airway and vessel trees plays an
important role in the diagnosis and treatment planning of lung
diseases. However, this is a challenging task due to the small size
of the anatomical structures, noise, or artifacts in the image.
The similar intensity values between the lung parenchyma
and airway lumen, the airway wall and the blood vessels
make extraction particularly difficult. Our method detailed
herein presents an automatic extraction of samples of both
the airways and vessels from the three-dimensional computed
tomography (3D-CT) based on the multi-scale principal curve
algorithm. The image is first thresholded to find airway or
vessel candidates according to their corresponding Hounsfield
units (HU). The Frangi filter is then used to extract the tubular
structures and remove background noise. Finally, a multi-scale
principal curve projection and tracing algorithm is applied on
the filtered image to identify the centerlines of the airway and
vessel trees.

I. INTRODUCTION

Segmentation and localization of pulmonary tube struc-
tures, such as bronchi and blood vessels, are critical to the
diagnosis and treatment of lung diseases [7]. Analyzing the
airway or vessel trees can help diagnose some pulmonary
diseases. Moreover, registration of the lung CT scans is
also an important step for many clinical applications. The
lung deforms and changes shape during respiration, making
registration across the breathing cycle critical to accurate seg-
mentation in four-dimensional computed tomography (4D-
CT). Fortunately, the airways and vessels are distinctive
anatomical structures. Registration of the lung within 4D-
CT scans based on the geometrical curve or branchpoints
of airway and vessel trees as a set of landmarks influences
the local deformations and offers a more robust and efficient
registration compared with the intensity based registration.
To facilitate these applications, automatic, reliable, robust,
and fast extraction of samples from the airway and vessel
trees in CT scans becomes critical.

However, segmenting the airways and vessels from CT
datasets is difficult and complex. Limited image resolution
and high level of noise lead to heterogeneous intensity
values of the voxels inside the airway lumen. Furthermore,
the leakage into the lung is a common issue for airway
segmentation due to the low contrast between the air and
the lung parenchyma. Some other problems, such as similar
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intensity values between the blood vessel and the airway
walls, may also affect the extraction.

Numerous airway tree segmentation techniques have been
previously been presented [7]. 3D region growing algorithms
are the most common and widely used methods for airway
tree segmentation [5]. This is a simple and fast method
that assumes no prior knowledge about the shape, size and
location of the airways. However, as the airways have similar
intensity values as the lung parenchyma, if choosing a global
HU threshold, the voxels of the lung parenchyma are mis-
classified. Various region growing based approaches using
different techniques have been presented to avoid leakage,
such as smoothing the image before the region growing [3].
However, filtering often removes important small airways.
Several other methods have also been proposed such as
morphological, wave front propagation, template matching,
fuzzy techniques or combinations of these methods.

Level set methods [8], and vessel enhancement filters [4]
integrating with different image matching techniques are
among the existing approaches to extract the vessel trees
from the lung CT images.

Our goal in this paper is to develop an algorithm to extract
samples from both pulmonary airway trees and vessel tress in
3D-CT images. Our method combines the tube enhancement
filters and the locally defined multi-scale principal curve
approaches. The main advantage of the proposed algorithm
is that tube enhancement and centerline extraction are both
based on the gradient and the Hessian matrix of the image
intensity. The kernel widths of the kernel interpolation of
the tubular measure in the principal curve projection and
tracing step for centerline detection directly uses the optimal
scales measured in the tube enhancement step. Using the
integration of the tubular structure enhancement filter, - the
Frangi filter, and the tubular structure tracing method, -multi-
scale principal curve tracing, provides a simple, fast, and
reliable method for the extraction of both the airway trees and
the vessels. This serves as a useful starting point for 4D-CT
lung image registration based on the curves or branchpoints
as interior landmarks of the airway and vessel trees.

II. METHODOLOGY

The algorithm consists of three steps: (1) The image is
pre-thresholded to select the airway candidates and the vessel
candidates, respectively. (2) The tube enhancement filter, the
Frangi filter, is used to enhance the tubular structures and
remove some noise voxels misclassified by pre-thresholding.
(3) Centerlines of the airway trees and vessel trees are
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extracted using the multi-scale principal curve projection and
tracing algorithm.

A. Preprocessing

In multi-detector computed-tomography (MDCT), the
voxel intensities are measured in HU. The air has an in-
tensity around -1000HU. An airway tree conducting air into
the lungs appears as tubes of low-intensity airway lumen
surrounded by high intensity airway walls. The voxels with
intensities below -800HU are loosely segmented as air filled
regions. As both the airway lumen and lungs are filled with
air, background noise inside the lung is often misclassified.
For the vessel trees, the lung field is first extracted from the
CT images. The blood and soft tissue have intensities around
50-200HU. The voxels with intensities above -500 HU are
classified as the foreground.

B. Tube Enhancement Filter

To extract voxels having tubular structures and to remove
the noise voxels misclassified in the pre-processing step,
we employ a tube enhancement filter by Frangi [4]. The
Frangi filter analyzes the eigenvalues of the Hessian matrix
of the image intensity at multiple scales, σ, of the Gaussian
smoother to obtain tubeness measure. Let p be the voxel lo-
cation in the image. If a scale is approximate to the radius in
p, the maximum filter response in p is obtained at that scale.
For dark airway tubes and bright background, the Frangi filter
response is wσ(λ(p)) = (1 − exp(−R2

A

2a2 )) exp(−
R2

B

2b2 )(1 −
exp(− S2

2c2 )) if λ2(p), λ3(p) > 0. For bright vessel tubes
and dark background, the Frangi filter response is obtained if
λ2(p), λ3(p) < 0. λ1, λ2, λ3 are the eigenvalues correspond-
ing to three orthonormal directions of the Hessian matrix
of the image intensity, and their magnitudes are sorted in
an ascending order, |λ1| ≤ |λ2| ≤ |λ3|. RA = |λ2|/|λ3|
is the ratio that distinguishes between plate-like and line-
like structures; RB = |λ1|/

√
|λ2λ3| distinguishes blob-

like structures; S =
√
λ21 + λ22 + λ23 eliminates background

noise; a, b, c are normalizing constants. The filtered image
has maximum response along the centerlines of the tubular
structures, reduced near the boundary and close to zero
outside the tubular-like regions. Therefore, both airway and
vessel tubes are enhanced by the Frangi filter. The locally
defined multi-scale principal curve tracing algorithm will be
implemented in these filtered images.

C. Locally Defined Multi-Scale Principal Curve Tracing

Locally defined principal curves are discussed in previous
papers by Ozertem and Erdogmus [2], [6]. Following this
concept, we employ a subspace constrained tracing method
[1] to trace the centerlines of the airway and vessel trees
in the filtered image. Given a seed point and an initial
tangent direction, the proposed method uses the gradient and
Hessian of the kernel interpolation of the tubeness measure
to calculate the principal curves in the data having locally
similar characteristics with the seed points. The voxels in the
vicinity of the seed point in the constrained normal subspace
iteratively converge to the principal curve, and the algorithm

then traces the curve along the center of the tube in the
tangent subspace.

Let {pi}Ni=1 be the voxel locations of the filtered image,
where pi ∈ Rn. The kernel interpolation of the tubeness
measure is given as,

f (p) =

N∑
i=1

w(pi)kΣi(p− pi)

where w(pi) is the tubeness measure for each voxel in the
filtered image; Σi is the covariance of the Gaussian kernel
kΣi

(p) = CΣi
e−

1
2pT Σ−1

i p. The gradient and the Hessian of
the kernel interpolation are:

g(p) = −
N∑
i=1

w(pi)ciui

H(p) =

N∑
i=1

w(pi)ci(uiu
T
i −Σ−1i )

where ci = kΣi
(p − pi), ui = Σ−1i (p − pi). The local

covariance inverse based on the gradient and Hessian is
defined as:

Σ−1(p) = −f (p)−1H(p) + f (p)−2g(p)gT(p)

((λ1(p),v1(p)), ..., (λn(p),vn(p)) are the eigenvalue -
eigenvector pairs of local covariance inverse, where the
eigenvalues are sorted such that λ1(p) < λ2(p) < ... <
λn(p) and λi 6= 0. Here n = 3. v1(p) corresponding
to the smallest eigenvalue forms a tangent subspace. It
indicates the direction along the tubes with the minimum
intensity variation. The normal subspace is spanned by
the remaining eigenvectors, V⊥ = [v2(p) v3(p)]. Mean-
shift updates constrained in the normal subspace, m⊥(p),
iteratively force p to converge to the principal curve,
where m⊥(p) = V⊥VT

⊥m(p); m(p) = (
∑N
i=1 kΣi

(p −
pi)Σ

−1
i )−1

∑N
i=1 kΣi(p−pi)Σ

−1
i pi. A point is on the prin-

cipal curve iff the gradient g(p) is orthogonal to the normal
subspace. Propagating through the tangent subspace with
proper directions and the step length will trace the locally
defined principal curve at p. If p has been previously traced,
is out of the image boundary, or the kernel interpolated
tubeness measure is lower than a threshold, then the tracing
terminates. This iterative tracing algorithm combines the cor-
rection in the constrained normal subspace and propagation
in the tangent subspace with proper directions to trace the
locally defined principal curves. The kernel widths of the
kernel interpolation of the tubeness measure in each location
are varied based on the scale at which the maximum response
of the Frangi filter is obtained. Therefore, the proposed
algorithm is referred to as the multi-scale principal curve
algorithm.

III. EXPERIMENTAL RESULTS

We apply our method to a 3D-CT data set. The size of
the image is 512× 512× 307, and the resolution is 0.78×
0.78× 1mm3.
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A. Airway Trees

Presegmentation of airways is done by selecting vox-
els with ≤ 800 HU intensity. However, since the lung
parenchyma has intensity values near this range, global
thresholding may select those voxels. Frangi filter is used to
enhance the airways and remove some non-tubular structures.
In the filtered image, airway structures have high tubeness
measurement compared to the non-tubular region. The fil-
tered image still contains small holes. Since the airway tree
is 26 connected, the 26 - connected voxels are selected to
extract the airway trees and small and disconnect holes are
removed.

The centerline tracing is implemented in the filtered image.
A seed point and an initial direction are manually selected.
Kernel interpolation of the tubeness measure gives more
weights to the center voxels. The kernel widths in the kernel
interpolation are the optimal scales of each voxel obtained
from the Frangi filter response measurement. Principal curve
projection of the whole dataset is first obtained by iteratively
converging the points to the principal curve in the constrained
normal subspace. Then tracing starts from the seed point
and follows the given direction until it terminates. At each
iteration, the direction of the principal curve is calculated,
and the immediate neighbor voxel in that direction is selected
as the next approximate curve sample. After each termination
of branch tracing, the projected principal curve subset is
used to check if there are any nearby branches bifurcating
from the previously traced branch. If there are bifurcating
branches, a new principal curve trace is initialized until all
branch candidates are visited.

Fig. 1 shows the projected airway tree and the extracted
centerlines of the airway tree. The Frangi filter produces
disconnections at the thin branches. A complete airway tree
can be reconstructed based on the extracted centerlines and
scales.

(a) (b)

Fig. 1. Centerline extraction of airways: (a) Principal curve projection
of airways; (b) Segmented airway trees (blue) with traced centerlines
overlayed. The black dot is the selected seed point.

Fig. 2 shows the mask obtained for the pre-extracted
airway tree after thresholding, tube enhancement, and hole
removal using ITK-SNAP and the reconstructed airways
based on the center points and the corresponding radius.

(a) (b)

Fig. 2. The pre-extracted airway tree and the reconstructed airway tree.

B. Vessel Trees

For vessel extraction, the lung field is first extracted to
limit the vessel extraction to the interior of the lung. Since
the lung is full of air, the image is pre-thresholded to roughly
extract the lung field. Morphological operations are then
used to fill the cavities caused by the structures with higher
intensities, such as the blood vessels, airway walls, and other
soft tissues. Finally, the binary lung field mask is mapped
with the original image.

HU ≥ −500 HU is used to select the vessel candidates.
Then the Frangi filter is employed to enhance the tubular
structures. 26-connected voxels are then selected to extract
the vessel trees, and small holes are removed. As the
extracted vessel branches are disconnected due to the low
resolution of the image, a large amount of seed points need to
be provided in order to trace all of the disconnected branches.
Instead, the centerlines of vessel trees are extracted by
iteratively projecting the vessel tree candidates to converge
on the principal curve in the constrained mean-shift normal
subspace without tracing along the tangent subspace. Fig. 3
shows the vessels enhanced by the Frangi filter using ITK-
SNAP and the extracted centerlines of the vessel trees.

(a) (b)

Fig. 3. (a) Vessels enhanced by the Frangi filter; (b) The extracted
centerlines of the vessel tree.

IV. DISCUSSIONS AND CONCLUSION

In this paper, we present a method that combines the
tube enhancement filter and the locally defined multi-scale
principal curve projection and tracing algorithm to extract
the samples from airway and vessel trees. Our method uses
the gradient and Hessian of the image intensity to calculate
the principal curves in the data having locally similar char-
acteristics with the seed points. The voxels in the vicinity of
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the seed points in the constrained normal subspace iteratively
converge to the principal curve, and propagating along the
tangent subspace, the algorithm can trace the principal curve
along the center of the tube. Selection of the airway seed
points is manual. Optimal scales obtained from the Frangi
filter are employed as the kernel widths for the kernel
interpolation of the tubeness measure. In tracing branching
curves, new seed points are given to initialize another tracing.
Our ultimate goal is to perform the deformable registration
of the lung within 4D-CT scans based on the curves or
branching points as a set of landmarks for the airway or
vessel trees. Therefore, we have not to pay much attention
extracting the small, peripheral branches. Our future work
will focus on performing registration within 4D-CT scans
based on these landmark samples of the airway and vessel
trees.
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