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Abstract— This paper describes an automatic procedure for
extracting sulcal lines from cortical surface meshes of the
human brain, which will serve as a tool for landmark extraction
as well as for investigating the morphometry of sulci. The
procedure consists in a sequence of steps, including sulcal basin
segmentation based on local curvature information, estimating
a bundle of depth-constrained geodesic paths and determining
a robust probability map of sulcal lines crossing. In this
experiment, we present quantitative validations on two main
sulci to observe the agreement of our method with manually
traced curves.

I. INTRODUCTION

A growing number of methods for analysing cortical
anatomical and/or functional data rely on the extraction
of cortical folding patterns. For example in the context of
inter-subject brain registration, sulcal landmarks are used to
constraint the parameterization of the cortical surface [1] and
enforce the correspondance between indivuals. The accuracy
and robustness of these landmarks is therefore essential but
the manual delineation of sulcal lines is a difficult and time-
consuming task ([2], [3], [4]) .

Indeed, several approaches for the automatic extraction
of sulcal fundi from the cortical surface has been proposed
[1], [5], [6], [7], [8]. The Brainvisa1 software provides
methods for the identification [9] and projection [10] of
main sulci on the cortical surface. The resulting projected
sulci show several components and branches that are not
anatomically relevant and should therefore not be considered
as landmarks. Clouchoux et al. [1] propose a procedure to
transform each sulcal projection into a single smooth line
without branche using a multi-resolution snake algorithm.
However, the reduction of sulcal fundi to a single line is not
always justified since for sulci with multiple compartments
the resulting sulcal line would cross a gyrus. Furthermore,
this method does not always provide the expected quality
(lack of accuracy, wrong connectivity).

In this paper we present a new method that performs
an automatic and robust sulcal line extraction, and aims
at finding a single line per sulcal basins. It is based on
a geodesic distance constrained by the cortical geometry
(curvature, depth) and the definition of a shortest path
probability map within each sulcal basin. In the next section
we present our algorithm then in section 3 we evaluate the
process on a set of 20 subjects.
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II. METHODS

Individual cortical surfaces are extracted from T1-
weighted images. Discrete curvature and geodesic depth
maps are estimated from each mesh using Brainvisa (see
“Fig. 1(a)” and “Fig. 1(b)”). These methods are described in
detail by Cachia [10]. The cortical tiangular mesh, denoted
as M , is composed of n vertices V = {v1, v2, . . . , vn}, and
m edges E = {e1, e2, . . . , em}. Each vertex vi ∈ V is a
point in 3D space vi = (xi, yi, zi) and each edge ek ∈ E
connects together a pair of vertices (vi, vj).
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Fig. 1. The discrete curvature map (a), the geodesic depth map (b) and
the cortical mesh are computed using Brainvisa.

In [4], Shattuck et al. describe a semi-automated curve
tracking algorithm for the delineation of sulci on the cortical
surface. This method computes the shortest path constrained
by curvature between any two given extremity vertices. We
extend this approach in order to obtain a fully automatic
sulcal extraction as follows:

1) the geodesic paths are constrained by the depth map
instead of a local measure of convexity (similar to a
computation of mean curvature), because we observed
that it leads to a better definition of sulcal lines.

2) the two extremities of each sulcal line are identified
automatically.

As the estimation of shortest paths is essential in our ap-
proach, we briefly describe this step (more details can be
found in [4]).

A. Geodesics, Shortest Paths and Weighted Graphs

A geodesic path is composed of a set of points on the
cortical surface mesh linked by edges. Let us consider the
cortical mesh as a weighted graph G = (E, V,W ). The paths
between any pair of vertices is obtained using Dijkstra’s
algorithm [11], [12]. The algorithm finds the path with lowest
weight (i.e. the shortest path) between a given source vertex
in the mesh and any other vertex. Sulcal lines can thus
be defined as shortest paths in the weighted graph with
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appropriate weighting. The weight wk ∈ W associated to
the edge ek is defined as :

wk = (αi + αj).‖vi − vj‖ (1)

where αi is a cost function associated to the vertex vi:

αi =
(

1
1 + expλ.ci

)γ
, as defined in [4] (2)

Contrary to the authors of [4] who proposed to use a local
measure of convexity at the vertex vi for ci, we suggest to
take advantage of the geodesic depth (See “Fig. 3(b)”) as
described in next section. λ and γ are two parameters that
balance the influence of the cost function versus the length of
the edge in wk “(1)”. We empirically fixed λ = 3 and γ = 2
to obtain geodesic paths that properly follow the fundus of
the sulci.

The path that connects the vertices vi and vj is then
defined as Pij . The weighted length L of a path Pij is the
sum of the weights of the edges forming the path connecting
the two vertices:

L(Pij) =
∑

wk|ek∈Pij

wk (3)

and Sij is the shortest path among all possible paths, whose
length is minimal.

Sij = arg min(L(Pij)) (4)

“Fig. 2” shows an example of a sulcal line resulting from
the depth-constrained shortest path on a cortical surface.

0 1

Fig. 2. The depth map for the superior frontal sulcus is shown as a colored
texture (deeper parts in red). The shortest path constrained by this depth map
is shown as a white line.

B. Automatic identification of sulcal lines extremities

We introduce a new method to automatically and robustely
identify the extremities of the sulcal lines that will be linked
by the shortest path as defined in previous section. In order to
avoid gyrus crossing, it seems logical to separate the basins
and the ridges. This separation is a process of segmentation
and define the regions of interest (sulcal basins) in which we
seek sulcal lines. The first idea is that ridges and basins have
opposite curvature signs.

1) Segmentation of sulcal basins: Boundaries between
basins are either saddles or ridges and have positive or zero
curvature value. First, we threshold discrete curvature map
by keeping only the negative curvature (“Fig. 1(a)”) followed
by a morphological closing to reduce noise. A connected
components algorithm is then applied and results in a set
of sulcal basins as illustrated on “Fig. 3(a)”. Let us denote
B ⊂ V the set of resulting sulcal basins. In each sulcal basin
the depth is then normalized to vary between 0 and 1 (“Fig.
3(b)”).

(a)
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Fig. 3. (a) labelled sulcal basins B (b) normalized geodesic depth map by
basin

We then consider the projection of main bottom sulcal
lines on triangulated cortical surfaces [10]. This projection
results in a complex sulcal representation to which is asso-
ciated a label corresponding to the sulcus nomenclature.

(a) (b)

Fig. 4. (a) Identification of sulci (b) Projections of bottom lines

These two steps of identification (“Fig. 4(a)”) and pro-
jection (“Fig. 4(b)”) are used in our method to assign one
or more labels in each basin. We can observe that the
sulcal projection shows several connected components and
branches.

Indeed, several labels may be in the same basin. For
instance, it is very common that the superior frontal sulcus
and the precentral sulcus meet inside the same sulcal basin.
On “Fig. 5(a)”, these two sulci are including in the single
yellow basin.

For this reason, we define a new set Bproj ⊂ V as the
result of a large dilation of the sulcal projection (“Fig. 5(b)”).

We then define Blab = Bproj ∩B and label its connected
components.

On “Fig. 4(a)” in green color, we can see that the superior
frontal sulcus will be characterized in two distinct basins
while it was used as a single connected component in the
snake method [1].
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Fig. 5. (a) one labelled sulcal basin B (b) two projections closing with a
larger structuring element Bproj (c) intersection Blab = Bproj ∩ B (d)
Bcont contour of Blab

From these labeled basins, the main contribution of our
method concerns calculating a path probability map. That is
used to automatically find the extremities of the sulcal lines.

2) From path probability map to longest shortest path:
We now consider the contour Bcont of Blab (See “Fig.
5(d)”). On “Fig. 6(a)”, some examples of distributed vertex
belonging to the green contour of the blue basin show several
paths (in red color) through this basin. For each pair of
vertices (vi, vj) ∈ Bcont, we estimate the shortest path Si,j
and we increment a counter on each vertex of the basin Blab
when it is crossed by Sij .

This way, we define Bproba as the map of probability
(“Fig. 6(b)”) of belonging to a set sulcal lines, that we can
normalize between 0 and 1 in each basin.

(a)

0 1
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Fig. 6. (a) in green Bcont, in red a set of shortest paths SPi,j (b) path
probability map Bproba from blue (0) to red (1) (c) longest shortest path
LS

We threshold Bproba to keep only the points that have a
high probability to belong to a sulcal lines. For this paper,
the threshold was chosen empirically and fixed at 0.3. Let us

denote Bthr ⊂ Blab this set. For each connected component
Ci ∈ Bthr, we compute the longest shortest path LSi
between each vertex pair (vj , vk) ∈ Ci :

LSi = arg max{L(Sjk)}
∀(vj ,vk)∈Ci

(5)

LSi is then taken as the sulcal line for the basin described
by Ci.

III. RESULTS AND DISCUSSION

The performance of our method was evaluated on the left
cortical surface of 20 subjects. Parameters were empirically
set at λ = 3, γ = 2 and 0.3 as threshold of Bproba for all
subjects. Two sulci (the central and frontal superior sulci)
were manually delineated by an expert using the ”surfpaint
toolbox” [2] of Brainvisa software. We qualitatively and
quantitatively compared our method with the sulcal projec-
tions from [10] and the snake algorithm [1]. We measured the
deviation from the manually traced central sulcus (CS) and
superior frontal sulcus (SFS) through the geodesic Hausdorff
distance defined as follow. For two sets of vertices defining
two sulcal lines P and Q,

dHausdorff (P,Q) = max{dcurv(P,Q), dcurv(Q,P )}

where
dcurv(P,Q) = sup

i∈P
inf
j∈Q

Sij

The distribution of the Hausdorff distance through the 20
subjects for the three methods and the two sulci is shown
on the “Fig. 7”. This measure indicates a strong reduction
of the deviation with our method as compared to others for
both sulci (average for CS: our method 7.6, projections 20.6,
snake 22.6 and for SFS: our method 11.9, projections 17.8,
snake 20.0). Our approach clearly outperforms the two other
methods.
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(b) Superior frontal sulcus

Fig. 7. Descriptive statistics of geodesic Hausdorff distance, obtained for
the three methods. For each box, the horizontal mark indicates the median
value; the upper and lower edges contain the data distribution within the
first lower through the last upper quartile values; the whiskers cover values
within 1.5 times this interquartile range.

“Fig. 8” shows the results for the frontal superior sulcus
obtained with our method. The snake algorithm reduces each
sulcal projection into a single regular connected component.
It is thus not designed to manage the multiple part sulci.
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The superior frontal sulcus is often divided into two con-
nected components separated by a gyrus. In this case, the
major weakness of the snake method is that the sulcal line
passes through the connecting gyrus (“Fig. 8(a)”), since the
extremities of this curve are located in two separated basins.
On “Fig. 8(b)”, we show the result of our method in this
configuration. The corresponding sulcal line is divided into
two components (two sulcal lines having the same label),
one in each basin.

(a) snake method (b) our method

Fig. 8. Comparison of snake method (a) and our approach (b) for the
frontal superior sulcus.

Moreover, our method deals with the extremities of sulci
(the most variable part [13]) in a coherent manner. As shown
on the “Fig. 9” with the lower extremity of the central sulcus,
identifying the sulcal fundus is not clear in this region and
two directions seem valuable. Indeed, the line traced by the
expert is much shorter than the result from the snake. The
expert chose to draw a short sulcal line instead of tracing a
confusing part while the snake is constrained to choose one
of the two branches. The path resulting from our method
is very similar to the manually delineated line. This is the
outcome of using probability maps as defined in section II-
B.2, as illustrated on this figure. We show the probability map
thresholded between 0.05 and 0.3. The potential branches
appear in the probability map, with a low value (blue and
cyan branches) and the final path corresponds to the vertices
with a probability value greater than our threshold equal at
0.3, which results in an unambiguous short line.

0.05 10.3

snake
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Fig. 9. Comparison of two methods snake and our method with manual
delineation on the bottom region of central sulcus.

IV. CONCLUSION

In this paper, we proposed an automatic extraction of
sulcal lines on the cortical surface using shortest path prob-
ability maps.

The method was applied to two major sulci, the superior
frontal sulcus and the central sulcus. Results showed a good
agreement with a manual segmentation and outperformed
two other methods [1], [10]. The process should prove
useful for methods using sulcal lines such as landmark based
surface matching or sulcal morphometrics. Further work will
evaluate performances on a lot more sulci and will focus on
an automatic thresholding of the probability maps.
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