
  

  

Abstract—It is valuable for diagnosis of atherosclerosis to 
detect lumen and media-adventitia contours in intravascular 
ultrasound (IVUS) images of atherosclerotic plaques. In this 
paper, a method for contour detection of plaques is proposed 
utilizing the prior knowledge of elliptic geometry of plaques. 
Contours are initialized as ellipses by using ellipse template 
matching, where a matching function is maximized by particle 
swarm optimization. Then the contours are refined by boundary 
vector field snakes. The method was evaluated via 88 in vivo 
images from 21 patients. It outperformed a state-of-the-art 
method by 3.8 pixels and 4.8% in terms of the mean distance 
error and relative mean distance error, respectively. 

I. INTRODUCTION 
THEROSCLEROSIS, a vascular disease, is a major 
cause of mortality in industrialized countries. 

Intravascular ultrasound (IVUS) is a real-time, high 
resolution, and invasive imaging modality, which provides a 
valuable technique for diagnosis of atherosclerosis. Contour 
detection of atherosclerotic plaques is a crucial step for 
quantitative assessment of atherosclerosis. It consists of 
detection of two contours, including lumen and 
media-adventitia contours. The contour detection is 
traditionally achieved by manually tracing the two contours 
by physicians. However, it is tedious, time-consuming, and 
subject to physicians’ experience. 

To overcome the drawbacks of manual tracing, several 
research groups have investigated automated methods. There 
are mainly two categories of methods according to the 
information they use. The first is driven by region 
information [1-2]. It models gray level distribution of various 
regions in images and discriminates the regions to delineate 
borders between them. But the accuracy of the modeling is 
usually degenerated due to artifacts, as well as complex 
components in plaques, such as calcifications and lipid pools. 
The second category of methods is those based on edge 
information [3-4]. It captures and connects edges in images, 
which are represented by large gradient, variance, or other 
characteristics. This category of methods generally takes 
advantage of snakes, also known as active contour models, to 
deform an initial contour and converge it to a final one by 

 
Manuscript received March 25, 2011. This work was supported in part by 

the Leading Academic Discipline Project of Shanghai Educational 
Committee (J50104) and Innovation Fund of Shanghai University 
(10010710007).  

Qi Zhang and Jun Shi are with the School of Communication and 
Information Engineering, Shanghai University, 200072, China (phone: 
86-21-56331787; fax: 86-21-56333213; e-mail: zhangq@shu.edu.cn).  

Yuanyuan Wang and Jianying Ma are with Fudan University, Shanghai, 
200433, China. (e-mail: yywang@fudan.edu.cn; mjy7307@163.com). 

using the edge information [4]. However, speckle noise 
contaminates IVUS images and results in low signal-to-noise 
ratios [2], leading to many spurious edges in the images and 
limiting the precision of contour detection.  

In order to improve the accuracy of contour detection, 
other types of information besides region and edge 
information need to be explored and utilized. Liu et al. [5] 
noticed that the geometry of objects (thermal lesions) at 
elastographic images are close to circles, so they used the 
circle template matching to detect contours of the objects with 
the help of the prior knowledge of geometry. Inspired by their 
work, we notice that there is also prior knowledge of object 
geometry in IVUS images. Due to blood pressure and vessel 
wall elasticity, the geometry of the lumen and 
media-adventitia contours tends to be ellipse [6-7]. Therefore, 
in this paper, the prior knowledge of elliptic geometry is 
incorporated in the contour detection to initialize snakes, 
which are then driven by the edge information and refined to 
yield the final contours. 

II. METHODS 
We propose a method using ellipse template matching and 

particle swarm optimization (PSO) to automatically initialize 
the lumen and media-adventitia contours. Contour refinement 
is then conducted at the boundary vector field (BVF) to 
evolve the initial contours until they converge to final ones. 

A. Extraction of Regions of Interest 
To automate procedures of contour detection and reduce 

computing time, regions of interest (ROIs) are automatically 
extracted from IVUS images. We first crop each image to a 
10 × 10 mm2 sub-image whose center is the catheter’s center. 
The sub-image serves as the ROI for media-adventitia 
contour detection. After the media-adventitia contour is 
detected, a new ROI, which is 15% larger than the area inside 
the media-adventitia contour, is extracted for lumen contour 
detection.  

B. Ellipse Template Matching 
The ellipse function is defined with five parameters: 
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where xc and yc are the coordinates of the ellipse center, ra and 
rb are half the lengths of the major and minor axes of the 
ellipse respectively, and θ is the orientation of the ellipse.  

We then design an ellipse template function T(x, y) as 
follows: 
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The template is comprised of three regions, including the 
inner ellipse, the region between inner and outer ellipses and 
the region outside the outer ellipse. The intensities at the three 
regions are -1, 1, and Tbg, respectively, where Tbg ∈ [-1, 1].   

We define a matching function as the sum of the products 
of the template T(x, y) and the image being analyzed I(x, y): 
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An elliptic object can be found when (3) is maximized: 
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Here, xc*, yc*, ra*, rb*, and θ* denote the parameters of the 
ellipse which optimally approximates to the object. 

It is indicated from (2) that the region between inner and 
outer ellipses is positive for the summing in (3), whereas the 
inner ellipse is negative. Thus an elliptic object with a low 
gray level, in a background with a high gray level, can be 
detected by the ellipse template matching. Because there are 
two contours being detected, the “object” and “background” 
have different meanings for different tasks. For the lumen 
contour detection, the object should be small, only containing 
lumen, and the background should include plaque and 
adventitia. For the media-adventitia contour detection, the 
object should be large, consisting of lumen and plaque, and 
the background should only contain adventitia. As an 
example, simplified structures in an IVUS image is seen in 
Fig. 1a, where the regions corresponding to lumen, plaque 
and adventitia are indicated. Fig. 1b and Fig. 1c illustrate 
different meanings of objects and backgrounds for detection 
of lumen and media-adventitia contours, respectively, where 
the objects are superimposed with white dots. 

The parameter Tbg in (2), i.e., the intensity outside the outer 
ellipse in the template, controls the template matching to 
search for different sizes of ellipses in the image, thus it can 
be adjusted to detect the two contours. When Tbg is large (e.g., 

 
Fig. 1.  Ellipse template matching. (a) Simplified structures in an IVUS 
image; (b, c)  the object (dotted area) and background when detecting the 
lumen contour and the media-adventitia contour, respectively; and (d, e) 
ellipse templates which are matched for (b) and (c), respectively. 

let it take the extreme value, 1), two regions including the 
regions outside the outer ellipse and between two ellipses, are 
positive for the summing in (3), whereas only the inner ellipse 
affects the summing negatively. Therefore the template tends 
to shrink when maximizing (3), implying it is suitable for 
lumen contour detection. When Tbg is small (e.g., let it take 
the extreme value, -1), two regions consisting of the inner 
ellipse and the region outside the outer ellipse affect 
negatively on the summing, and only the region between two 
ellipses is positive. Thus the template inclines to expansion to 
maximize (3), implying it is suitable for media-adventitia 
contour detection. In this paper, we empirically set Tbg to 0.3 
and -0.7 for lumen and media-adventitia contour detection, 
respectively. As an example, Fig. 1d and Fig. 1e show two 
ellipse templates matched for lumen and media-adventitia 
contours, respectively.  

C. Particle Swarm Optimization 
The maximization problem shown in (4) can be solved by 

exhaustive search, which is very time consuming. Thus it is 
necessary to solve it by optimization algorithms. PSO is a 
population-based evolutionary computation technique 
exploiting cooperative and social aspects of the biological 
phenomena [8-9]. PSO iteratively moves individuals (i.e., 
particles) in a population (i.e., a swarm) in the search space 
and eventually finds the optimal solution. The iteration 
equations of the conventional PSO are given by [8-9]: 

1 1 2 2( 1) ( ) ( ) [ ( )] [ ( )]i i i i i i ik k k k kϕ α γ α γ+ = + − + −v v p x G x ,(5) 
 ( 1) ( ) ( 1)i i ik k k+ = + +x x v , (6) 

where xi(k) = [xc,i(k), yc,i(k), ra,i(k), rb,i(k), θi(k)] denotes the 
position of ith particle at the kth iteration, vi is the velocity of 
the particle, pi and G are the personal and global best 
positions, respectively. φ(k) is an inertial function, α1 and α2 
are acceleration constants, and γ1i and γ2i are random 
numbers.  

In this paper, we use a variation of PSO which integrates 
PSO with genetic algorithms [8-9]. After particle positions 
are updated in each iteration, particles are selected, in pairs, 
for crossover. For each pair, two child particles are generated 
by a crossover rule and replace the parents, and their positions 
and velocities are given by: 

 (1 ) , (1 )i i j j j ip p p p′ ′= + − = + −x x x x x x , (7) 

 , where ( ) /i i j j i j i j′ ′= = = + +v v V,v v V V v v v v , (8) 

where p is a random probability.  
The hybrid PSO enhances searching the space between 

particles. Via crossover, the searching may skip off from the 
local maxima and approach the global maxima. However, 
blindly using hybrid PSO is not appropriate in the ellipse 
template matching. It needs to be reconsidered. In the early 
stage of searching, it is helpful to use the hybrid PSO to 
expand exploration of the global maxima. In the late stage, 
the searching algorithm needs to precisely locate the maxima, 
but the crossover might delay or even disturb the progress. 
Therefore, we propose a new rule to meet the requirements of 
both global exploration and precise localization. When the
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Fig. 2.  Results of contour initialization. (a) An ROI for media-adventitia contour detection; (b) the ellipse template matched for the media-adventitia contour; 
(c) the detected (yellow solid line) and manually traced (cyan dashed line) media-adventitia contours, and the new ROI for lumen contour detection (yellow 
dashed square); (d) the ellipse template matched for the lumen contour; and (e) the detected (yellow solid line) and manually traced (cyan dashed line) lumen 
contours.  

iteration time k < [α N], the hybrid PSO is used, and when k ≥ 
[α N], the conventional PSO is used. Here, [·] is the operator 
of rounding, N is the total number of iterations, and α ∈ [0, 1] 
is a proportional coefficient.   

To accelerate the searching with PSO, the parameters in (3) 
are limited to a certain range. First, for media-adventitia 
contour detection, we limit the distance between (xc, yc) and 
the center of ROI, to a number Dc, and ra and rb to a range 
from rmin to rmax. Then, for lumen contour detection, rmax is 
updated to half the major axis of the ellipse found in 
media-adventitia contour detection. 

D. Contour Refinement 
The contours detected by the ellipse template matching and 

PSO are close but still coarse estimation of the desired 
contours. They are subsequently refined by snake evolution. 
Here we use an adaption of snakes, called BVF snakes [10], 
which reduces computational requirement and improves 
capture range. We take advantage of BVF snakes to lead the 
initial contours to the refined contours. (For details, see [10].) 

III. EXPERIMENTS AND RESULTS 

A. Image Acquisition and Parameter Setting 
In vivo IVUS images were acquired at the Department of 

Cardiology, Zhongshan Hospital of Fudan University, 
Shanghai, China, by using an IVUS imaging system iLABTM 
(Boston Scientific, USA) with a 310F 40-MHz Atlantis 
mechanical catheter (Boston Scientific, USA). In total, 88 
IVUS images of coronary arteries were captured from 21 
patients and digitized with 8-bit gray scale and resolution of 
45 pixels/mm. Lumen and media-adventitia contours in all 88 
images were manually traced by experienced physicians to 
serve as the ground truth. 

The proposed method was validated on in vivo images with 
parameters empirically set as follows. The intensity outside 
the outer ellipse Tbg was set as 0.3 and -0.7 for detection of 
lumen and media-adventitia contours, respectively. In PSO, 
the particle number was 24, the iteration times of PSO were 
150, the inertial function φ(k) = 0.9 – 0.0045k, acceleration 
constants α1 and α2 both equaled to 2, and the proportional 
coefficient α was set as 0.8. The parameters to limit searching 
range of PSO were given by: Dc = 1.5 mm, rmin = 0.75 mm, 

and rmax = 3 mm. The iteration times of BVF snakes were 60. 

B. Qualitative Results 
Results of contour initialization are depicted in Fig. 2. It 

was demonstrated that the proposed method yielded initial 
contours close to the manually traced contours. The new ROI 
for lumen contour extraction was smaller than the ROI for 
media-adventitia contour extraction, which was helpful for 
efficiently and effectively initializing the lumen contour.  

Results of contour refinement are shown in Fig. 3. The 
proposed method was compared with manual tracing and the 
texture-RBF method [3]. The contours detected by the 
texture-RBF method (Fig. 3c and Fig. 3g) were disturbed and 
attracted by spurious edges resulting from speckle noise. In 
contrast, all contours detected by our method (Fig. 3b and Fig. 
3f) were very close to the ground truth (Fig. 3d and Fig. 3h), 
demonstrating the accuracy and robustness of the algorithm. 

C. Quantitative Results 
To quantitatively evaluate the accuracy of the contour 

detection algorithms, automatically detected contours were 
compared with the ground truth. The accuracy was quantified 
with the following two standard measures, including the 
mean distance error (MD) and relative mean distance error 
(RMD). Suppose p is a discrete contour point detected by 
automated algorithms, and q is its closest point in the ground 
truth curve. The distance between p and q is denoted as D(p). 
The relative distance is RD(p) = D(p)/d(q, O), where O is the 
center of the ground truth curve, and d(q, O) is the distance 
between q and O. Then MD and RMD are given by [1]: 

 MD = meanp(D(p)), (9) 
 RMD = meanp(RD(p)) × 100%. (10) 
As enumerated in Table I, the proposed method yielded 

lower MD and RMD values compared to the texture-RBF 
method, suggesting the proposed method was superior to the 
texture-RBF method in terms of contour localization. The 
proposed method decreased MD (RMD) for lumen and 
media-adventitia contours by 3.1 pixels (2.7%) and 4.4 pixels 
(6.8%), respectively. The average improvement for two 
contours was 3.8 pixels and 4.8% in terms of MD and RMD, 
respectively. 
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Fig. 3.  Two examples of final contour detection, contrasted with results of 
the texture-RBF method. (a, e) IVUS images; (b, f) the results by the 
proposed method; (c, g) the results by the texture-RBF method; and (d, h) the 
ground truth. 

TABLE I 
QUANTITATIVE COMPARISON OF METHODS FOR CONTOUR DETECTION 

Contours Methods MD 
(pixels) RMD 

Lumen contour 
The proposed method 6.6±3.3 9.6%±4.8% 

Texture-RBF method 9.7±3.9 12.3%±5.5% 

Media-adventitia 
contour 

The proposed method 7.1±7.3 6.1%±5.7% 

Texture-RBF method 11.5±5.8 12.9%±6.2% 

IV. DISCUSSION 
The intensity outside the outer ellipse Tbg was set to 0.3 and 

-0.7 for detection of lumen and media-adventitia contours, 
respectively. In the experiments, we also examined the role of 
Tbg by varying its values from -1 to 1, with an interval of 0.1. 
When Tbg was between -0.8 and -0.5, the matching algorithm 
almost always found an ellipse close to the media-adventitia 

contour, and when Tbg was between 0.2 and 0.4, it almost 
always found an ellipse near the lumen contour. When Tbg 
was set to -1 or -0.9, the method tended to find a large ellipse 
containing a big part of adventitia, and when it was set larger 
than 0.4, the matched ellipse might shrink to the round 
catheter. When it was valued from -0.4 to 0.1, the method 
appeared ambiguous in finding the lumen or media-adventitia 
contours. It will be investigated in the future to determine an 
adaptive Tbg by analysis of the global and local intensities in 
IVUS images. 

RMD values of lumen contour detection obtained by our 
method were larger than those of media-adventitia contour 
detection (Table I), suggesting the method might perform 
worse for lumen contours. We attributed it to the 
phenomenon that lumen contours appeared less elliptic and 
more irregularly shaped than media-adventitia contours. 

V. CONCLUSION 
In the paper, a method is proposed for detection of lumen 

and media-adventitia contours in IVUS images. It integrates 
ellipse template matching with PSO to initialize the contours 
and uses the BVF snakes to refine them. Results on 88 in vivo 
images demonstrated the performance of the method. The 
method will be incorporated into the characterization of 
atherosclerotic plaques in a future study.  
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