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Abstract—This paper presents a design and implementation 

of a neural-machine interface (NMI) for artificial legs that can 

decode amputee’s intended movement in real time. The newly 

designed NMI integrates an FPGA chip for fast processing and a 

microcontroller unit (MCU) with multiple on-chip 

analog-to-digital converters (ADCs) for real-time data 

sampling. The resulting embedded system is able to sample in 

real time 12 EMG signals and 6 mechanical signals and execute 

a special complex phase-dependent classifier for accurate 

recognition of the user's intended locomotion modes. The 

implementation and evaluation are based on Altera's Stratix III 

3S150 FPGA device coupled with Freescale's MPC5566 MCU. 

The experimental results for classifying three locomotion modes 

(level-ground walking, stairs ascent, and stairs descent) based 

on data collected from an able-bodied human subject have 

shown acceptable performance for real-time controlling of 

artificial legs. 

I. INTRODUCTION 

HE technology of neurally controlled artificial limbs has 

advanced rapidly in recent biomedical research [1-6]. 

Compared with computerized prostheses without neural 

control, neurally controlled artificial limbs perform and feel 

like natural limbs. A neural-machine interface (NMI) that 

deciphers neural signals from amputees to identify the users' 

intended movements is the center of the neural control system 

for artificial limbs. The NMI needs to be realized in an 

embedded computer so as to be carried by amputees.  

 Electromyographic (EMG) signals recorded from muscles 

are effective electrical signals for expressing movement 

intent [7]. While EMG-based NMI has been tested clinically 

for artificial arm control [1-2], there has been no commercial 

EMG-controlled prosthetic leg available. This is partly 

because the EMG signals recorded from leg muscles are 

highly non-stationary. Accurately decoding the user intent 

from such signals is difficult. Furthermore, the accuracy in 

identifying the lower-limb movement is essential because any 

incorrect decision may cause the user to stumble and even 

fall. To address these challenges, our research group has 

developed a phase-dependent EMG pattern recognition (PR) 

strategy to dynamically classify the user's locomotion modes 

[3]. A novel, neuromuscular-mechanical fusion technique 

that incorporates neuromuscular control information in the 

form of EMG signals and mechanical forces/moments acting 

on prostheses  has been proposed to further improve the 
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accuracy of the PR algorithm [4].  

 The realization of our  new PR strategy on PC shows a high 

accuracy in identifying user's locomotion modes [4]. 

Although the software implementation on PC is useful to 

verify the correctness of the neural decoding algorithm, it is 

not applicable for amputees to wear in real life. Realizing the 

NMI in an embedded computer is required and challenging 

because of computation complexity of the PR algorithm 

coupled with real-time requirement of controlling artificial 

legs. Such an embedded system should provide high 

computation speed for the PR algorithm since any delayed 

decision may result in unsafe use of the prosthesis. Memory 

resources need to be carefully managed because fast memory 

resources on embedded computers are usually very limited. 

Effective timing control is also required to guarantee smooth 

control of artificial legs. The execution time of the neural 

machine interfacing algorithm for one analysis window is 

usually expected to be less than 20 ms to ensure the safe use 

of artificial legs. 

 Our prior NMI design was implemented on a Freescale's 

MPC5566 132 MHz 32 bits microcontroller unit (MCU) that 

can accurately classify sitting and standing in real-time [5]. 

The measured delay for generating a decision in one analysis 

window with 7 EMG inputs was around 80 ms [5]. If more 

tasks such as walking on different terrains are considered, 

more EMG channels and auxiliary mechanical signals need to 

be collected, and a more complicated phase-dependent 

classifier needs to be applied for accurately determining the 

user's locomotion modes. Existing embedded systems 

generally cannot be directly applied to such a system for NMI 

to provide real time performance. To tackle this problem, we 

designed a parallel PR algorithm tailored to the FPGA device  

for classifying sitting and standing [6]. The offline 

measurements based on Altera Stratix II GX EP2SGX90 

FPGA device showed a speedup of around 280X over the 

software implementation based on MPC5566 MCU [6], 

implying that FPGA-based parallel design is a promising 

approach to realize real-time NMI for artificial legs.    

 This paper presents an integrated design of a special 

purpose embedded system realizing a complete NMI for 

artificial legs. It has an MCU with multiple built-in ADCs for 

real-time data sampling and dispatching and an FPGA device 

for fast data decoding. The neuromuscular-mechanical 

fusion-based phase-dependent PR algorithm is parallelized 

and mapped to the FPGA device. The implementations are 

based on Freescale's MPC5566 evaluation board (EVB) and 

Altera's DE3 education board with a Stratix III 3S150 FPGA 

device. The experimental results for classifying three 
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locomotion modes (level-ground walking, stairs ascent, and 

stairs descent) with 12 EMG signals and 6 mechanical signals 

have shown that the average execution time of PR for one 

analysis window is 0.25 ms. A 38X speedup is observed over 

the software implementation on a PC with 3.2 GHz Intel i3 

processor and 6GB RAM.  

II. EMBEDDED SYSTEM ARCHITECTURE 

A. System Architecture 

The system architecture of the new NMI for artificial legs 

is shown in Fig. 1. The embedded NMI senses signals from 

two physical systems—a human neuromuscular system and a 

mechanical prosthetic leg, and decodes these signals to 

control the prosthesis. The NMI contains two modules: a 

MCU module for data sampling and dispatching, and an 

FPGA module for fast data decoding and pattern recognition. 

Data are transferred between these two modules using serial 

peripheral interface (SPI).  

1) MCU Module: Multichannel EMG signals are collected 

from multiple electrodes mounted on patient's residual 

lower-limb muscles. Mechanical forces/moments are 

recorded from a 6 degrees-of-freedom (DOF) load cell 

mounted on the prosthetic pylon. The EMG signals and the 

mechanical signals are preprocessed by filters and amplifiers 

and then simultaneously streamed into on-board ADCs of the 

MCU. The direct memory access (DMA) engine transfers the 

digitized input data from the ADCs to the RAM without 

direct involvement of the processor. Data are then sent to the 

FPGA module through SPI bus.  

2) FPGA Module: Once the EMG and mechanical data are 

received by the FPGA device, they are stored in the on-chip 

RAM and segmented by sliding analysis windows with a 

fixed window length and a window increment. The FPGA 

system works in two modes: classifier training and pattern 

recognition. In the classifier training mode, a large amount of 

continuous analysis windows are collected to train the 

classifier. The parameters of the trained classifiers are stored 

in the RAM for later use in the pattern recognition mode. In 

the pattern recognition mode, analysis windows are 

processed continuously in real-time. One classification 

decision is produced for each window to identify the user's 

intended movement.    

B. Phase-Dependent Pattern Recognition 

The architecture of the neuromuscular-mechanical 

fusion-based phase-dependent PR strategy for artificial legs is 

shown in Fig. 2. To identify the user intent, we need first 

extract features from each input channel and then choose a 

classifier to assign the intended locomotion mode. The 

phase-dependent classifier consists of a gait phase detector 

and multiple classifiers [3]. Each classifier is trained for a 

specific gait phase. In the real-time pattern recognition 

process, current gait phase is first determined by the gait 

phase detector in each analysis window, and then the 

classifier associated with that specific phase is adopted to do 

the classification.  

1) Gait Phase Detection: In this study, four gait phases are 

used: initial double limb stance, single limb stance, terminal 

double limb stance, and swing [4]. The real-time gait phase 

detector is built based on the vertical ground reaction force 

(GRF) measured from the 6-DOF load cell.  

2) Feature Extraction: Features are extracted in every 

analysis window from each input channel. In this study, four 

EMG time-domain (TD) features (mean absolute value, 

number of zero crossings, waveform length, and number of 

slope sign changes) are used [8]. For the mechanical 

forces/moments, the mean value is computed from each 

individual DOF as the mechanical feature. The features 

extracted from each channel are fused and normalized into 

one feature vector for each analysis window. The feature 

vector is then sent to the classifier for pattern recognition. 

3) Pattern Recognition: A simple linear discriminant 

analysis (LDA) classifier is adopted in this study because of 

its computation efficiency for real-time prosthesis control and 

the comparable accuracy to more complex classifiers [5, 9].  

III. SYSTEM IMPLEMENTATION & PROTOTYPE 

The system implementation is based on Freescale's 

MPC5566 132 MHz 32 bits MCU with the Power 

ArchitectureTM and Altera's DE3 education board with a 

 
Fig. 1.  System architecture of designed NMI for artificial legs. 

 

 
Fig. 2.  Architecture of neuromuscular-mechanical fusion-based PR 

algorithm for artificial legs. 
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Stratix III 3S150 FPGA device. The prototype board for our 

NMI system is shown in Fig. 3. This paper only presents the 

implementation and experimental results of the PR algorithm 

for testing phase. We choose the window length and the 

window increment to be 160 ms and 20 ms, respectively. The 

implementation of the classifier training algorithm will be 

presented in the future work.  

A. Timing Control and Memory Management 

The MPC5566 MCU has 40 on-chip ADC channels with 

12 bit resolution, 32 KB unified cache and 128 KB SRAM. It 

also has four SPI modules that each can be configured as 

either an SPI master or a slave, and a DMA controller that 

supports up to 64 channels. The ADC channels samples EMG 

signals and mechanical forces/moments at the rate of 1000 

Hz. Therefore, for each channel every analysis window 

contains 160 data samples. Twenty new samples are streamed 

into the MCU in every window increment. To guarantee the 

smooth control of the prosthesis, efficient timing control and 

memory management is required. Fig. 4 shows a simplified 

diagram of our strategy for one data channel. In the diagram, 

we use two RAM blocks,    and    to store the input data. 

Both blocks have the capacity of 20 data samples. While    

is used for storing new incoming data from the ADC module, 

the old data in    are being transferred to the FPGA device 

through the SPI bus for pattern recognition. In this manner, 

real-time data sampling for new analysis window and pattern 

recognition for the current window can be done 

simultaneously. Since the sampling time for filling up one 

RAM block is 20 ms, the total execution time of SPI transfer 

and PR computation must be less than 20 ms to ensure the 

smooth data streaming and prosthesis control. As shown in 

Fig. 4, if    is filled up with new samples, then it will switch 

roles with   . At this time, new data will be stored in   , and 

data in    will be sent to the FPGA device. On the FPGA 

device, a similar circular buffer is also designed to efficiently 

utilize the memory resources. 

B. Task Parallelism and Pipelining 

A new phase-dependent PR algorithm is designed and 

implemented based on Altera's Stratix III 3S150 FPGA 

device, to make the best use of the parallelism of FPGAs. The 

algorithm is implemented using Impulse C C-to-HDL 

CoDeveloper software [10]. Fixed-point data format is 

adopted for non-integer data in the implementation. 

Fig. 5 shows the data flows and task stages of the PR 

algorithm. In our design, tasks are divided into multiple 

processes that can be executed in parallel if there are no data 

dependencies or in pipeline if a sequence of small processes 

are executed repeatedly. The data streaming between 

different processes is done by dual-port first-in-first-out 

(FIFO) RAM buffers. A single process can be associated with 

multiple input and output FIFO buffers. Signals are used to 

synchronize a group of processes if needed.   

The largest benefit obtained from the FPGA design is the 

high parallelism of the PR algorithm. It is observed that the 

task procedure for each individual channel—from data 

sampling, storing, and loading, to feature extraction—is 

independent and almost identical so that all the channels can 

be processed in parallel. This greatly reduces the computation 

time for feature extraction, which is very important because 

in the software implementation of the PR algorithm, we found 

the computation time for feature extraction counted for 90% 

of the total execution time. 

IV. EXPERIMENTAL RESULTS 

 This study was conducted with Institutional Review Board 

(IRB) approval at the University of Rhode Island and 

informed consent of subjects. To verify the correctness of the 

FPGA-based PR algorithm and compare the performance of 

the new NMI design with our previous software 

implementation on PC, we used the same dataset to run on 

 
Fig. 5.  Task stages and data flows of phase-dependent PR.  

 

 
Fig. 4.  Timing control and memory management of real-time control 

algorithm for one channel. 

 

 
Fig. 3.  The prototype board based on MPC5566 EVB and DE3 

education board. 
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both platforms. The software implementation is based on a 

PC with Intel i3 3.2 GHz processor and 6 GB RAM, designed 

using Matlab programming tool. The testing dataset was 

previously collected from an able-bodied subject for 

identifying three locomotion modes including level-ground 

walking, stairs ascent, and stairs descent.  The parameters of 

the trained classifiers were manually loaded into the NMI 

systems beforehand. Twelve input channels of EMG signals 

and six channels of mechanical forces/moments were used as 

the baseline configuration. The SPI clock was set to 1 MHz 

and synchronized between the MPC566 EVB and the DE3 

board. The SPI data transferring time for every window 

increment was less than 6 ms. The resource utilization 

summary of the FPGA implementation is listed in Table 1.  

 We tested both the FPGA implementation and the software 

implementation for 1000 continuous analysis windows and 

found their classification results were completely matched. 

Table 2 shows comparison of the average execution time of 

the PR algorithm for one analysis window. Besides the 

baseline configuration with 12 EMG channels and 6 

mechanical channels, we also tested the performance of 

another configuration with 6 EMG channels and 3 

mechanical channels on both platforms to make a better 

comparison. 

 From Table 2 we can see, to classify one analysis window, 

the computation of PR for our new NMI system took less than 

0.3 ms. The total execution time of SPI data transfer and PR 

computation was significantly less than the window 

increment (i.e. 20 ms), which ensured the smooth control of 

prosthesis. When the NMI system had 6 EMG channels and 3 

mechanical channels, our new FPGA-based design gave a 

27X speedup over the software implementation. When the 

number of channels doubled, the performance of the new 

design was even better, a 38X speedup was observed 

compared with the software implementation. This is because 

of the parallelism of FPGAs. The results are promising and 

imply that even more neural signals and mechanical signals 

can be effectively handled by our designed embedded system 

for identifying more complex activities, which is one of our 

future research tasks.  

V. CONCLUSIONS 

 In this paper, a new embedded system has been designed 

and implemented for neuromuscular-mechanical 

fusion-based NMI for artificial legs.  It integrates an MCU for 

real-time data sampling of multichannel EMG signals and 

mechanical signals and an FPGA device for fast PR 

computation. A parallel phase-dependent PR algorithm has 

been developed and implemented on Altera's Stratix III 

3S150 FPGA device. The functionality of the new design for 

accurately classifying three locomotion modes including 

level-ground walking, stairs ascent, and stairs descent have 

shown great improvements over our prior work that can only 

classified sitting and standing. The performance of the 

FPGA-based implementation of PR algorithm was 38X faster 

than the software implementation on a PC with Intel i3 3.2 

GHz processor. Future work includes real-time testing of our 

new NMI system on amputee subjects, minimizing power 

consumption, and increasing reliability. 
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Table 2.  Comparison of PR execution time 

 FPGA Software Speedup 

6 EMG 

3 Mech. 

 

0.22 ms 

 

6.0 ms 

 

27x 

12 EMG 

6 Mech. 

 

0.25 ms 

 

9.5 ms 

 

38x 

 

Table 1.  Stratix III 3S150 Resource Utilization 

Resource Testing 

Combinational ALUTs  36,656/113,600 (32%) 

Memory ALUTs 1,504/56,800 (3%) 

Registers  46,713/113,600 (27%) 

Block Memory bits 902,866 /5,630,976(16%) 

DSP blocks  104/384 (27%) 

 

5210


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

