



Abstract—Smartphones are sensor-rich and Internet-enabled.
With their on-board sensors, web services, social media, and
external biosensors, smartphones can provide contextual
information about the device, user, and environment, thereby
enabling the creation of rich, biologically driven applications.
 We introduce ContextProvider, a framework that offers a
unified, query-able interface to contextual data on the device.
Unlike other context-based frameworks, ContextProvider
offers interactive user feedback, self-adaptive sensor polling,
and minimal reliance on third-party infrastructure.
ContextProvider also allows for rapid development of new
context and bio-aware applications.
 Evaluation of ContextProvider shows the incorporation of
an additional monitoring sensor into the framework with fewer
than 100 lines of Java code. With adaptive sensor monitoring,
power consumption per sensor can be reduced down to 1%
overhead. Finally, through the use of context, accuracy of data
interpretation can be improved by up to 80%.

I. INTRODUCTION

Early detection remains a powerful tool in the fight
against illnesses. Unfortunately, despite regular health
exams, the symptoms of many disorders appear sporadically.
Treatable conditions may evade early detection, limiting
treatment options. However, studies have shown that up to
20% of mortalities can be prevented with personal
monitoring systems [1, 2].

Personal health-monitoring systems have historically
relied on sensors connected to external storage, as the
gathered data is offloaded to an external computer for
analysis. However, the advent of sensor-rich and Internet-
enabled smartphones is enabling new applications for health,
wellness, and entertainment. With their built-in sensors,
web services, social media, and external biosensors,
smartphones can offer context-rich hints to guide application
behaviors.

While many context-based monitoring systems exist, most
such systems lack interactivity [6, 9]. The lack of online
feedback can result in missed opportunities for users to help
disambiguate the collected data. Other monitoring services
either have limited extensibility for new sensors due to
vendor-specific context formats [5, 8], or they rely on third-
party support for storage and processing and impose

Manuscript received June 20, 2011.
M. Mitchell is with Florida State University, Tallahassee, Florida 32313

United States (mitchell@cs.fsu.edu).
C. Meyers is with Florida State University, Tallahassee, Florida 32313

United States (meyers@cs.fsu.edu).
A. Wang is with Florida State University, Tallahassee, Florida 32313

United States (awang@cs.fsu.edu).
G. Tyson is with Florida State University, Tallahassee, Florida 32313

United States (tyson@cs.fsu.edu).

deployment restrictions [5-7]. For most systems, power
management is not a first-order concern, and thus is either
not incorporated into the design or not evaluated [5-9].

This work presents ContextProvider, a framework for
integrating contextual data streams collected from
smartphones, which provides a unified, query-able interface
to all contextual data on the device.

ContextProvider provides the online information needed
for users and caregivers to react quickly to life-threatening
events. It also provides long-term information needed by
healthcare providers to make lifestyle and medication
recommendations. ContextProvider can be tailored to the
individual, providing customizable thresholds, contextual
response, and the ability to integrate more sensors. Finally,
with its adaptive sensor monitoring, ContextProvider keeps
power overhead low. In combination, these benefits afford
the user more independence and a higher quality of life.

II. DESIGN

ContextProvider is a framework that collects, analyzes,
and archives the daily context extracted from on-device
sensors, web services, and social media. ContextProvider
layers between underlying sensors and various applications
(Figure 1). It consists of an online supervised context
learning component, an adaptive frequency polling module,
a long-term data repository, the capability to offload
analyses for non-time-sensitive data trends, a graphical user
interface for user feedback and configurations, and context-
aware medical applications.

Figure 1 ContextProvider System Architecture.

A. Supervised Context Monitoring

Based on the current state and data patterns from
biological and environmental sensors, ContextProvider can
prompt users for feedback and confirmations to categorize

ContextProvider: Context Awareness
for Medical Monitoring Applications

Michael Mitchell, Christopher Meyers, An-I Andy Wang, Gary Tyson

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 5244

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011

events [16]. For example, if the heart-rate monitor
encounters an increase in pulse rate with unfamiliar data
patterns from other sensors, ContextProvider will prompt the
user to verify whether the user needs medical attention. If
medical attention is not required, the user is prompted to
identify the current activity (e.g., exercising), so that various
sensor readings and user feedback can be correlated to build
a new context. Thus, the next time the heart-rate monitor
detects an increase in pulse rate with similar data patterns
from other sensors, it will infer the user-supplied context
(e.g. exercising). Threshold parameters are adjusted
automatically to reduce the rate of user confirmations.

This feedback is stored to be used in machine-learning
algorithms to guide future interactions and reduce false
alarms and unnecessary interactions [12]. This design is
comparable to systems such as automated wandering
detection for dementia patients [11]. For such cases, the
data set can be flagged for analysis by medical professionals.

By incorporating feedback into the system, users are
engaged in a dialog about their activities, an approach that
makes it easier for them to better manage their health.

B. Self-Adaptive Sensor Polling

 In sensor-rich smartphones, frequent readings from
sensors may shorten the battery life significantly. Therefore,
one goal for ContextProvider is to poll data infrequently,
while yielding accurate contexts. This frequency varies by
sensor and the context to be analyzed. For example,
accurate gait analysis requires polling rates in excess of 50
Hz, while footstep detection requires only 20 Hz polling
rate.
 To reach this goal, ContextProvider lengthens data polling
interval delays when it senses little or no change from
specific sensor channels. That is, the context itself is used to
optimize the context collection. If a change in context is
detected, the system reverts to normal polling rates. Note
that certain sensors, such as heart-rate monitors, need to
have a maximum polling interval set for safety reasons.

The user can also specify a lower update rate (to the
extent that it is safe) for each sensor in order to conserve
power. Sensors such as GPS can be deactivated and,
instead, rely on a less accurate position triangulated by
cellular and WiFi networks.
 With self-adaptive polling, the reduced frequency reduces
the amount of data acquired as well as the associated
storage. Furthermore, having fewer sensor polls reduces the
number of system wakeups, which consume a significant
amount of power.

C. Example of a Context-aware Medical Application:
Tiered Emergency Response

When ContextProvider suspects a potential emergency
(e.g., a person falling on the ground), the system checks for
context to filter out obvious false alarms (e.g., an accidental
drop of a phone followed by an immediate pickup of the
phone and continuation of a phone call). If no such
condition is met, notifications are then issued to the user,

who may identify additional false positives (e.g., monitoring
strap adjustment). If there is no response within a defined
time, communication to the user’s pre-specified social
contacts is attempted. If contact is made, these individuals
can evaluate the situation further and take appropriate
action, such as alerting emergency personnel. If no contact
is made with the user’s social contacts, the system further
escalates the alert and contacts user-specified emergency
services directly. This escalation process reduces the
number of, false alerts. All threshold values can be
customized based on individual needs.

D. Extensibility

To ease the incorporation of new sensors from diverse
vendors, ContextProvider uses existing APIs and standards
wherever possible. The synthesis of each context can be
based on multiple sensors in a one-to-many fashion. Sensor-
reading requests from multiple sources of context synthesis
are coordinated and consolidated for better efficiency.
Contexts can also be derived from other contexts, structured
in a general graph to make fuller use of sensor and
contextual information.

E. Long-term Data Analysis

In addition to online information, patterns and trends can
be extracted from incremental checkpoints over time, thus
enabling early detection of an emerging condition. With the
user’s permission, health history and analysis can be
uploaded from the device to health professionals
periodically or on demand.

III. IMPLEMENTATION

Leveraging Google’s open-source Android platform,
ContextProvider extends the Android content provider [10]
to acquire data, process contexts, and facilitate the sharing
of contextual information. ContextProvider was developed
on the Android 2.2 platform with additional support from
Smart-Entity Object Relational Manager [15] to store
context objects in SQLite. Current supervised learning
mechanisms remain primitive and rely heavily on
empirically derived rules to guide context fusion.
ContextProvider consists of 1,200 lines for monitoring 6
hardware sensors (e.g., accelerometer) and 4 data sources
(e.g., website services); 1,100 lines for deriving the 30
context subcategories; 700 lines for communication
services; and the remaining for the user interface.
Combined, the framework consists of 4,627 lines of Java
code and 712 lines of XML.
 ContextProvider is an always-on application and consists
of multiple system services and Android broadcast receivers
(event handlers) coordinated primarily through Android
intents (an asynchronous mechanism that allows data
sharing between processes) [10].

A. Context Monitors

 ContextProvider centers around six context categories
(Table 1). Each category is managed by a construct called a

5245

monitor, which is either a task running periodically to
monitor context or an extension of broadcast receivers. The
monitors themselves can handle multiple sensors and fuse
information.

The location monitor tracks GPS and network-based
positions and is aware of user-entered places such as home
and work, as well as reverse geo-coded address and
establishment lookup. The movement monitor utilizes
bearing and speed calculated from GPS data, as well as
accelerometer motion and magnetic orientation to determine
the movement of the user. The weather monitor uses the
position determined from the location monitor to query web
services for localized conditions and forecasts. The social
monitor tracks phone and SMS usage, as well as following
user interactions with social networking. The system
monitor receives all transmissions broadcast from the
Android system, including power, service states, and
user/device interactions. Finally, the derived monitor fuses
the data gathered from the other sensors, as well as other
external sensors, in order to predict higher-level contexts,
including device location relative to user, activity, and
mood.
 The system and social monitors are implemented as
broadcast receivers. Rather than polling at periodic
intervals, these monitors are event-driven, acting as listeners
for intents and various handlers responding to specific
broadcasts. System messages, power state changes,
user/device interaction, and phone state changes are
examples of intents received by these listeners.
 The ContextProvider framework can be extended to
integrate new polling-based devices and services through the
static timer task method.

Location Movement Weather
GPS State Temperature
Address Speed Condition
Neighborhood Bearing Humidity
Zip Code Step Count Wind
Altitude LastStep HazardLevel
Social System Derived
State State Place
Last Comm. BatteryLevel Activity
Contact LastPlugged Shelter
Msg LastIn UserLastPresent OnPerson
Msg LastOut WiFi SSID Mood

Table 1: Partial Enumeration of Collected and Derived Contexts.

B. Sensors and Web Services

Sensor information is read using asynchronous callbacks,
abstracted as Android sensor event listeners. An event-
listener function can be registered to be executed when a
particular sensor’s state changes. Read sensor values are
passed to the function. Parameters such as event-trigger
rate, accuracy, and type can be configured for the sensor.

Data is obtained not only from sensors but also from web
services and social networking. Information such as harsh
weather conditions, combined with location and time of day,
can be useful in determining if a dementia patient is
wandering [11]. External data requires a different access

method than sensor data but with the same goal, which is to
provide an up-to-date view of the world. Rather than
receiving local notification of data changes, outside data
sources must be polled to detect changes.

C. Data Acquisition

The data-acquisition code translates raw data from on-
board sensors, web services, social media, and external
biosensors into a low-level state for building a higher-level
context. Android sensor-event listeners are used to gather
data from accelerometers, GPS, network, and light, which
are then stored as local objects and logged to a database for
future processing.

Simple contextual processing also takes place at the data
acquisition phase. For example, footstep detection can be
performed online with the current and previous
accelerometer readings. Although this context formation
can be done at a later time, the footstep detection, combined
with the user’s orientation can assist in determining indoor
locations and contexts in a timely manner when GPS is not
available.

D. Processing

Higher-level context is constructed from the state
provided by data acquisition. For example, GPS and
network provide location awareness; accelerometer, GPS,
and network are used to derive movement. The location
provider builds a higher-level context that includes: current
address, city, zip code, proximity to requested businesses or
addresses, and whether the user is indoors or outdoors.
Movement context can derive the current action being
performed, such as walking, running, or driving as well as
the current speed and direction in which the user is
traveling.

E. Sharing

ContextProvider is most useful when utilized by outside
applications, thus providing an interface to context- aware
applications. ContextProvider supports the use of Android
intents to provide a query-able always-on interface.

IV. EVALUATION

For the evaluation, we used three HTC G1/Dream
Android devices running Android 2.2 platform,
CyanogenMod 6.1-DS, and Linux 2.6.35. Between
experiments, each phone was reset to the factory preset
setting with a freshly installed system image and cellular
radio disabled. The battery had a 1300mA rating.

Overheads: PowerTutor [14] was used to measure the
power overhead of ContextProvider running on a fully
charged idle phone over an hour with three repetitions. The
polling rate of the accelerometer was varied between 50 Hz
and 0.1 Hz, the range allowed by ContextProvider’s
adaptive polling mechanism. The resulting power
requirement varied from 964 to 45 mW per hour. Thus,
during periods of idle intervals (e.g., phone placed on table),

5246

the overhead imposed by ContextProvider per sensor was
within 1% (based on the phone’s 3.7V voltage rating). (Of
course, if a sensor is chosen to be disabled, the overhead
will be zero.)

The storage requirement is also dependent on the desired
context tracking intervals. For low-resolution tracking, the
system requires 11 KB/hour (1.1KB/hour with
compression). For high-resolution tracking, such as
performing gait analysis, the system requires 1 MB/hour
(700 KB/hour compressed).

Extensibility: Adding a new sensor into the
ContextProvider framework requires fewer than 100 lines of
code; a new context, as few as 20 lines of code.

Example context usage: Two sets of 326 full factorial
experiments [13] were conducted evaluating
ContextProvider's ability to use an ambient-light sensor and
accelerometer to deduce the number of footsteps taken (and
implicitly traveled distance indoors). The first set was a
walking test (100 steps); the second set was a staircase
ascension (40 steps) experiment. First, the ambient-light
sensor is used to deduce the phone location relative to the
body (in pocket, in hand, or in backpack). Low, medium,
and high sensitivity settings (60, 100, and 140 m/s2) were
then tested for the footstep detection algorithm [16] against
these three phone locations.

Table 2 shows the percent error under each experimental
setting. The 90% confidence intervals for the walking and
stair tests were within 16% and 36%, respectively. The
results show that by exploiting context (location of the
phone relative to the body) and by using the appropriate
sensitivity setting within the context (low for pocket, high
for hand, and middle for backpack), footstep prediction
accuracy can be improved by 3% to 80%. Combined with
user orientation information, this improvement can
subsequently improve prediction of the user’s indoor
location and activity.

 Walk test (100 steps) Stair test (40 steps)
 Low Middle High Low Middle High

Back-
pack 43.50 0.33 8.17 85.00 5.42 105.4
Hand 84.33 55.17 3.50 72.50 50.42 24.17

Pocket 37.17 40.00 115.3 12.50 40.42 136.7
Table 2 Percent Error in Predicting the Number of Footsteps.

V. FUTURE WORK & BROADER IMPLICATIONS

ContextProvider can be useful as a medical research tool
when deployed on a large scale. A large volume of data
could be provided to researchers and used in correlation
studies to help identify new early warning signs of disease.
It also has the potential to be used to facilitate large-scale
user feedback for clinical trials and new treatment options.

VI. CONCLUSION

We have presented the design, prototype, and evaluation
of ContextProvider, a novel context-aware framework.
ContextProvider allows interactive user feedback to guide

system monitoring behavior; it can be tailored to the
individual; it uses the popular open-source Android
framework and local processing in order to avoid reliance on
third-party infrastructure; and it reuses existing APIs
wherever possible to ease deployment of new sensors and
development of new contexts and context-aware
applications. ContextProvider can provide online
information for users and caregivers to react to life-
threatening events. It also provides the long-term
information needed for health-care providers to make
lifestyle and medication recommendations. In combination,
these can afford the user greater independence and a higher
quality of life.

This research was supported by NSF grant CNS-0915926.

REFERENCES
[1] Shah NB, Der E, Ruggerio C, Heidenreich PA, Massie BM. Prevention

of hospitalizations for heart failure with an interactive home monitoring
program. Proceedings of the 69th Scientific Sessions of the American
Heart Association, 1997.

[2] Clark RA, Inglis CC, McAlister FA, Cleland JF, Sweet S.
Telemonitoring or structured telephone support programmes for patients
with chronic heart failure: Systematic review and meta-analysis, BMJ,
334:942 2007.

[3] Mitchell M, Sposaro F, Wang A, Tyson G. BEAT: Bio-Environmental
Android Tracking. Proceedings of the IEEE Topical Meeting on
Biomedical Radio and Wireless Technologies, Networks, and Sensing
Systems (RWW), 2011

[4] Ledijdekkers P, Gay V. Personal heart monitoring system using smart
phones to detect life threatening arrhythmias. Proceedings of the 19th
IEEE Symposium on Computer-Based Medical System. 2006.

[5] Jung TM, Lee YS, Cho SB. Mobile sync-application for life logging and
high-level context using Bayesian network. Knowledge Management
and Acquisition for Smart Systems and Services, 6232:223-234, 2010.

[6] Sridevi S, Sayantani B, Amutha KP, Mohan CM, Pitchiah R. Context
aware health monitoring system. Medical Biometrics, 6165:249-257,
2010.

[7] Bardram, JE, Hansen TR, Initials. The aware architecture: supporting
context-mediated social awareness in mobile cooperation. Proceedings
of the 2004 ACM Conference on Computer Supported Cooperative
Work, 2004.

[8] Krause A, Smailagic A, Siewiorek DP, Context-Aware Mobile
Computing: Learning Context-Dependent Personal Preferences from a
Wearable Sensor Array, IEEE Transactions on Mobile Computing,
5(2):113-127, 2006.

[9] Fabiana G. Marinho, Fabrício Lima, João B. Ferreira Filho, Lincoln
Rocha, Marcio E. F. Maia, Saulo B. de Aguiar, Valéria L. L. Dantas,
Windson Viana, Rossana M. C. Andrade and Eldânae Teixeira, et al. A
Software Product Line for the Mobile and Context-Aware Applications
Domain. Software Product Lines: Going Beyond, Lecture Notes in
Computer Science, 6287:346-360, 2010.

[10] Google. Android developer’s site. July 2010. developer.android.com.
[11] Sposaro F, Danielson J, Tyson G. iwander: An android application for

dementia patients. Proceedings of 2010 IEEE EMBS, 2010.
[12] Sposaro F. and Tyson G. ifall: An android application for fall

monitoring and response. Proceedings of 2009 IEEE EMBS, 2009.
[13] Jain R. The Art of Computer Systems Performance Analysis. John

Wiley & Sons, Inc. 1991.
[14] Zhang L, Tiwana B, Qian Z, Wang Z, Dick R, Mao ZM, Yang L.

Accurate Online Power Estimation and Automatic Battery Behavior
Based Power Model Generation for Smartphones. Proceedings of
CODES+ISSS, 2010.

[15] Smart-entity. A simple ORM for Android. June 2011.
code.google.com/p/smart-entity.

[16] Pedometer. Android app that watches your every step. June 2011.
code.google.com/p/pedometer.

5247

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

