
 

 

 

 

 

Abstract—A significant portion of government health care 

funding is spent treating falls-related injuries among older 

adults. This cost is set to rise due to population aging in 

developed societies. Wearable sensors systems, often comprised 

of triaxial accelerometers and/or gyroscopes, have proven useful 

for real-time falls detection. However, a large percentage of falls 

occur at home and many of those happen at nighttime, when the 

person is unlikely to be wearing such an ambulatory monitoring 

device. It is envisaged that systems utilizing unobtrusive wireless 

sensors can be employed to survey the living space and identify 

unusual activity patterns which may indicate that a fall has 

happened at nighttime. In this study, a nighttime falls detection 

system designed for a single individual living at home, based on 

the use of passive infrared and pressure mat sensors, is explored. 

This paper describes both the sensor and system design, and 

investigates the feasibility of performing nighttime falls 

detection through the use of scripted scenarios using a single 

healthy test volunteer. In addition to normal movement activity, 

falls with unconsciousness, falls with repeated failed attempts to 

recover, and falls with successful recovery, are considered. By 

analyzing the location of sensor activity, periods of sensor 

inactivity, and unusual sensor activation patterns in uncommon 

locations, a sensitivity and specificity of 88.89% and 100%, 

respectively, are obtained (excluding falls followed by complete 

recovery). This demonstrates a proof-of-principle that nighttime 

falls detection might be achieved using a low complexity and 

completely unobtrusive wireless sensor network in the home. 

I. INTRODUCTION 

opulation aging is a mounting challenging facing 

developed societies. By 2030, approximately 20% of the 

population of developed countries will be aged 65 or more [1]. 

Citi Bank predicts that, by 2050, 22.6% of the Australian 

population will be over 65 years of age, and the associated 

health costs, aggregated pensions and general aged care will 

soar from 29% to 47% of total government spending. Annual 

health care spending will increase from $2,290 per person to 

$7,210 per person (accounting for inflation), placing further 

pressure on a relatively smaller population of workers [2]. 

Importantly, accidental falls are a leading cause of fatality 

for people aged 65 years and over. In this age group, 33% 

suffer at least one fall per year [3]. In both the US and 

Australia, victims aged 65 years and over account for 

approximately 75% of all deaths resulting from falls, and 

falls- related injuries account for around 10.9% of all hospital 

bed days.  

Timely detection of fall events can greatly reduce the cost 
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of care and potentially save lives by signaling for immediate 

assistance [3]. Over 60% of falls occur in dwellings, so the 

implementation of falls detection systems within these 

dwellings might serve to improve outcomes for those who 

suffer falls in these environments.  

The current state-of-the-art in falls detection relies 

primarily on the use of body worn sensors. Such devices often 

incorporate a triaxial accelerometer and/or gyroscope, and 

possibly a barometric air pressure sensor [4][5]. These 

wearable device systems are capable of detecting falls with 

good success (but still suffer from high false positive rates). 

Wearable sensor systems obviously require the subject to 

wear the device at nighttime if they are to successfully detect 

a fall which might occur. Unfortunately, the subject is 

unlikely to wear the device while in bed, and may be equally 

unlikely to remount the device before nighttime toileting or 

visits to the kitchen. Some unobtrusive systems have been 

developed to address the deficits of these wearable sensor 

systems.  

Video-based falls detection uses a network of video 

cameras to track subject movement. Lin and Ling used an 

object segmentation scheme to identify moving objects from 

the background, and were able to extract three features to 

detect and locate falls events [7]. The system assumed a fall 

event has a duration of 0.4-0.8 s, and was able to detect such 

falls with 93% accuracy. The disadvantages of such a system 

include an inability to detect falls where the subject attempts 

to break the fall, falling more slowly, and that real-time 

transmission of video impedes system scalability (unless 

extensive local video processing is performed at the capture 

point, which would significantly reduce device battery life).  

Yu et al. introduced a video-based system which identifies 

falls by detecting shape changes and taking the duration of 

falls into consideration [10]. However, only a single camera 

system was evaluated, and no discussion is provided on how 

this system, or a subsequent multi-camera system, would be 

implemented, or what their limitations might be. 

Apart from the limited accuracy of video-based falls 

detection systems, the most important drawback of a 

video-based approach is that the sensors must either process 

the video images locally (consuming power and increasing 

processor cost), or transmit the video (consuming even more 

power) back to a central server for further processing. 

Furthermore, video-based approaches also introduce privacy 

and ethical issues, which may hinder their ultimate 

acceptance. 

Acoustics-based methods have also been exploited for falls 

detection. Popescu et al. propose a vertical array of 
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microphones to detect the height at which a noise originates, 

with sources above two feet deemed to not be associated with 

a fall [8]. The system demonstrated 100% sensitivity, but a 

false positive rate of five false detections per hour.  

Due to the significant percentage of falls which happen at 

nighttime (54% for residential facilities, 76% for hospitals 

[6]), the expected compliance issues of wearable systems at 

nighttime, and privacy concerns associated with video-based 

methods, we propose an unobtrusive wireless sensor network, 

using passive infrared (PIR) motion sensors and pressure mat 

(PM) force sensors to detect falls which occur at night in a 

dwelling with a sole occupant. This system aims to 

complement a wearable sensor system which will be more 

efficacious during daytime hours.  

The following describes both the sensor and system design, 

and investigates the feasibility of performing nighttime falls 

detection through the use of scripted scenarios using a single 

healthy test volunteer.  

II. METHODOLOGY 

A. Sensor selection 

PIR and PM transducers are chosen for the task as they are 

reliable, cheap, easy to use, and generate very low bandwidth 

signals. The PIR sensor (Panasonic AMN24111) has a digital 

output, a detection range of 10 m, a coverage angle of ±55
o
 in 

the x-y plane and ±46.5
o
 in the y-z plane. These sensors detect 

the movement of warm bodies in the room but do not respond 

to stationary environments or ambient light. The PM is a 

momentary on/off switch sensor, constructed with a water 

resistant vinyl material, with dimensions of 790 mm x 540 

mm. 

B. Sensor design 

The battery powered sensor device, to which one of the 

above transducers are connected, comprises a microcontroller 

(Texas Instruments MSP430F5438) and a low power WiFi 

module (Roving Networks WiFly GSX, with 2.4GHz IEEE 

802.11g protocol). The WiFi module has a Class 1 output 

level (18dBm), and the tested indoor transmission range is 

about 30 m. 

A common sensor board design can be fitted with either a 

PIR or a PM sensor and loaded with the associated firmware. 

The sensor device operates in a sleep/active cycle which 

draws 60-120 mA when transmitting and 6-11 mA in sleep 

mode. Data are buffered to minimize the wake time and are 

transmitted at predefined intervals. The sensor runs for up to 

two weeks on two standard AA batteries, depending on the 

level of activity in the environment. The sensor printed circuit 

board is housed in a 70×54×14 mm enclosure and weighs 

57.5 g, which can be mounted on a wall. 

The sensor periodically sends a status packet at predefined 

intervals (usually 10 minutes in laboratory testing). The status 

packet informs the server of the sensor’s continued existence 

within the network. The status packet also reports the sensor’s 

operational status, such as the sent packet count, status packet 

interval and battery voltage. During normal operation, as the 

sensor is usually sleeping with its radio off, all data 

transmission is unidirectional and the server listens passively 

to the data sent by the sensor. 

Rather than sending a continuous data stream, the sensors 

only transmit event-based data to conserve power. The time at 

which the event occurred and the transition value (sensor 

off-to-on, or on-to-off) is buffered for later transmission, 

which will happen immediately after the next status packet, or 

instantaneously if the buffer is full. As a result, the worst case 

delay for the event data is the full interval of the status packet. 

All sensors are synchronized using a network time protocol 

(NTP) server. 

Using a hardware switch, the sensors can be manually 

switched into configuration mode during installation, at 

which point they will remain in a wake state and continuously 

sample and transmit the PIR or PM signals at 10 Hz. This is 

an important function during installation to test and debug the 

sensors in real-time, before they are finally switched into their 

low power modes. While in configuration mode, the sensors 

can receive configuration commands over the wireless 

network to set various sensor parameters, such as the status 

packet interval time. 

C. Network and data flow 

A star topology WiFi network is used, using a standard 

WiFi router as a base station. A PC-based server connected to 

the router acts as the centre point of the network. The server 

hosts an SQL server (MySQL version 5.1.48) and a 

JAVA-based TCP data handling application, which listens for 

sensor traffic. On power-up, or when data are ready for 

transmission, the sensor will wake up and initiate a TCP 

connection with the JAVA TCP server. A JAVA TCP server 

will process the received packet and insert the data into the 

SQL database as it arrives. A JAVA graphical user interface 

(GUI) application connects to the TCP server. By displaying 

the operational information of the sensors contained in the 

status packets, it allows the user to have an understanding of 

the overall system health, and detects if a sensor has stopped 

working (via a status packet timeout) and generates a warning 

dialogue. Furthermore, this GUI application allows the user to 

configure sensor parameters during installation (once they are 

set in configuration mode, as specified in Section II.B) and 

view the PIR and PM signals in real-time.  

D. Test environment 

In this study, a series of typical nighttime activities, 

including falls and non-fall events, were performed in the 

bedroom, corridor and bathroom of an apartment. Three PIR 

sensors and two PM sensors are used. The placement of these 

sensors is illustrated in Fig 1. A PIR sensor is placed in the 

bedroom (PIRbed), corridor (PIRcor) and bathroom (PIRbath). 

One PM sensor is put under the fitted sheet of the mattress 

(PMbed) and the second PM sensor is placed in front of the 

toilet seat (PMbath). In a full scale deployment, every chair, 

bed and toilet seat will be fitted with a PM sensor and the 

entire living space will be covered by PIR sensors.  

Simultaneous video, stamped with the PC system time, is 

captured using two USB cameras attached to the same PC 
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running the SQL server. This video is used to later annotate 

events in the PIR and PM signals. 

E. Data collection protocol 

A series of predefined simulated movements, mimicking 

nighttime movements, are performed by a single healthy 

subject to provide a proof-of-concept assessment of the 

feasibility of using a system of this design to unobtrusively 

detect falls at night in the home of an elderly individual living 

alone. In the scenarios that involve falls, one scenario with no 

falls and three different types of falls will be simulated: 

1) Fall with unconsciousness: The subject moves to a 

particular location, falls, and then lies stationary on the floor 

for a predefined duration. 

2) Fall with failure to recover: Subject falls, remains 

conscious, and repeatedly tries to stand up for about two 

minutes, with short breaks in between attempts, but fails each 

time. Fig. 2 provides an illustrative example of this scenario. 

3) Fall with successful recovery: subject falls onto the 

floor but is able to immediately stand up and recover. 

The exact scenarios performed are listed below in more 

detail. Each of these scenarios is repeated three times.  

a) Enter and leave room: Subject enters the room from the 

corridor, stays in the room for five minutes, performing either 

clothes sorting, or preparation of the bed, then leaves the 

room (6 scenarios incl. 0 falls.). 

b) Out of bed and dresses to leave room: Subject lies in bed 

for five minutes, wakes up, gets dressed, then either leaves the 

room, falls but unable to recover (either unconscious or 

attempting to recover) for 5 minutes, or recovers and leaves 

the room into corridor. (12 scenarios incl. 9 falls.) 

c) In bed, wake up and have a drink and back to sleep: 

Subject lies still in bed for three minutes to mimic sleeping. 

Subject wakes up, switches on the light and drinks some 

water. Subject then switches off the light and goes back to 

sleep, lying still for three minutes. (3 scenarios incl. 0 falls.) 

d) Sit on toilet, then leave bathroom: Sits on the toilet for 5 

minutes then stands up and leaves the bathroom (3 scenarios, 

incl. 0 falls.). 

e) Bedroom to bathroom, and back to bed (fall in corridor): 

In bed for one minute, walk from the bedroom into the 

bathroom via corridor. In the bathroom, stand on the pressure 

mat in front of the toilet seat for 30 s, then brush teeth, walk 

out of room into the corridor. On the way back to the bedroom 

the subject either continues without falling or simulates each 

of the three fall scenarios in the corridor; falls with failure to 

recover are simulated for 15 minutes. An example of the 

signals resulting from a fall with unconsciousness is shown in 

Fig 3. (12 scenarios incl. 9 falls.) 

f) Bedroom to bathroom, back to bedroom (fall in 

bathroom): Lie in bed for three minutes, get out of bed go to 

the bathroom via the corridor. Subject sits on the toilet seat 

for four minutes, after which the subject either returns to the 

bedroom or falls; again, falls with failure to recover are 

simulated for 15 minutes. (12 scenarios incl. 9 falls.)  

F. Falls detection algorithm 

The event data from the SQL database is interpolated and 

resampled at 10 Hz for further signal processing. All sensor 

data is aggregated using a logical OR operation, to generate a 

single sensor activity signal. If this signal is inactive for more 

than a predefined time threshold of four minutes, a fall alarm 

is generated.  

To indentify falls which are followed by several failed 

attempts to recover, PIR data from all PIR sensors are 

analyzed to determine there are more than four separate PIR 

activations in the last two minutes, while no PM sensors are 

activated. This would not work during the day, but such 

movement would be abnormal at night. No attempt is made to 

detect falls from which the subject successfully recovers. 

III. RESULTS 

Including all three falls types, the system achieved 59.26% 

sensitivity. This result improves to 88.89% after excluding 

scenarios where the subject recovers by themselves. The 

sensitivity increases to 100%, when only including falls 
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Fig. 1.  Floor plan of test environment, with PM sensor in front of toilet seat 

and on the bed; PIR sensors are installed in the corner of bedroom, corridor 

and bathroom, facing 45o outward from the corner. 

 

Fig. 3.  Activity vs. time taken from scenario f), where the subject fell and 

simulated unconsciousness for about 15 minutes. Each activity is annotated 

and numbered. 

 

  

 

 

Fig. 2.  Subject walks out of bathroom and falls onto the floor in the corridor. 

Also shown is the data captured by the corridor PIR sensor 
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where unconsciousness occurs. The specificity is calculated 

at 100%. These results are summarized in Table I. 

TABLE I 

FALLS DETECTION PERFORMANCE  

  
Predicted Sens. 

% 

Spec. 

% 

PPV 

% 
NPV 

% 

N 

Fall No fall 

A 

A
ct

u
al

 

Fall 16 11 
59.26 100.00 100.00 65.63 48 

No fall 0 21 

B 
Fall 16 2 

88.89 100.00 100.00 91.30 39 
No fall 0 21 

C 
Fall 9 0 

100.00 100.00 100.00 100.00 30 
No fall 0 21 

Sens.: sensitivity; Spec.: specificity; PPV: positive predictive value;  

NPV: negative predictive value; N: total scenario count. 
A: All scenarios included. 
B: All scenarios except fall with successful recovery. 
C: Only ADL and falls with unconsciousness. 

IV. DISCUSSION 

A low cost, low complexity, unobtrusive falls detection 

system for detecting falls at nighttime has been designed, and 

proof-of-concept testing has been performed on a single 

healthy volunteer. The system attempts to identify falls at 

nighttime where the subject is rendered unconscious or is 

unable to recover without help; the latter recognized by 

analyzing the frequency of sensor activation while the subject 

attempts to recover.  

As this study aims only to evaluate the wireless sensor 

system and explore the feasibility of performing unobtrusive 

falls detection with this suite of sensors, all the scenarios are 

simulated. Limiting the system to falls detection at nighttime 

further allows the simulated scenarios to closer approximate 

real nighttime activities which are more limited in their 

variety; this is very different to simulating a vast array of 

possible daytime activities.  

There is an inherent delay in the detection of falls events 

using this system, which come from two sources. Firstly, the 

data are buffered at the sensor and only sent after each status 

packet, at ten minute intervals in this study (but is 

configurable). Secondly, the fall detection algorithm 

functions by analyzing recent data (c.f., Section II.F). The 

delay in detecting a fall will be given by whichever of these 

two delays is larger. A delay of several minutes is still 

preferable to having no monitoring at all. 

Of course, the results presented here do not approach the 

accuracy of wearable sensor solutions, such as those 

presented by Bianchi et al. (97.5%) [5], however this is 

compensated by the unobtrusive nature of the system, which 

obviates the issue of compliance that plagues wearable 

solutions, particularly at nighttime.  

Chen et al. achieved 90% accuracy using a video-based 

system [9]; however, the implementation of video-based 

solutions poses significant challenges related to image 

processing, data transmission and scalability, cost and 

privacy, as discussed earlier.  

Zhuang et al. [11] proposed an acoustics-based system, 

which recognized the noise associated with the impact of a 

fall, achieving only a 70% detection rate. This is somewhat 

expected, given the plethora of flooring surfaces on which 

falls occur and the manner in which they happen. 

Future improvements to this system will add context 

awareness, such as modifying inactivity and repeated activity 

thresholds to tailor them for individual sensors; for example, 

more than ten minutes of intermittent activity on a corridor 

sensor late at night would be an unusual occurrence, or 

spending more than an hour in the bathroom might be equally 

abnormal. Furthermore, it may be possible to allow the 

system to adapt to the behaviors of the user through learning 

which is reinforced through the ability to cancel a false alarm 

in real-time during a trial deployment.  

V. CONCLUSION 

In this study, an unobtrusive wireless nighttime falls 

detection system, intended for use by older individuals living 

alone, is presented. The design is motivated by the large 

percentage of falls which occur at night, during which time 

compliance with the use of wearable falls detection sensors is 

low. By identifying periods of inactivity, or repeated 

intermittent activity on PIR sensors, while no PM as activated, 

simulated falls scenarios are accurately identified; however, 

real-world testing is required to truly validate this method. 

This system is likely to be a useful adjunct to wearable falls 

detection systems in the smart homes of the future. 
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