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Abstract—Profiling the usage of electrical devices within a 

smart home can be used as a method for determining an 

occupant’s activities of daily living. A nonintrusive load 

monitoring system monitors the electrical consumption at a 

single electrical source (e.g., main electric utility service entry) 

and the operating schedules of individual devices are 

determined by disaggregating the composite electrical 

consumption waveforms. An electrical device's load signature 

plays a key role in nonintrusive load monitoring systems. A 

load signature is the unique electrical behaviour of an 

individual device when it is in operation. This paper proposes a 

feature-based model, using the real power and reactive power 

as features for describing the load signatures of individual 

devices. Experimental results for single device recognition for 7 

devices show that the proposed approach can achieve 100% 

classification accuracy with discriminant analysis using 

Mahalanobis distances. 

Keywords-activities of daily living; nonintrusive load 

monitoring system; pattern recognition; smart home 

technology

I. INTRODUCTION 

   The increasing proportion of older adults makes it an 

essential task for today’s societies to improve the daily 

living standards for the ageing population. One way to 

provide them with more health care options is developing 

smart technologies that support independent living. A home-

based automated system can provide an environment that 

monitors the activities of daily living that can be used to 

predict the householder’s health and well-being [1]. Various 

sensing, monitoring, and actuating systems are expected to 

play key roles in smart homes. To facilitate the monitoring 

of activities of daily living, we propose the use of a 

nonintrusive load monitoring system (NILM), which can be 

used to identify the operating schedule of various electrical 

devices within a smart home. 

A NILM system is able to detect the operating schedule of 

various electrical devices within a smart home, such as 

when the devices are turned “on” or “off”, and the period of 

operation for each device. There are certain devices that can 

be associated with predicting activities of daily living of 

occupants of a smart home (e.g., toaster, microwave, 

dishwasher, electric kettle, television, lamps). Determining 

the operating schedule of individual electrical devices 

belonging to this category will make it possible to monitor 

the activities of daily livings of residents. The NILM system 

is expected to be used in conjunction with other non-

obtrusive monitoring sensor systems to enable robust and 

comprehensive monitoring within a smart home (e.g., 

RFIDs, thermistors, and pressure sensitive mats) [1]. 

   A simple method of detecting the usage of electrical 

devices is to install separate sensors for each device; 

however, this method requires a large amount of sensors, 

and the installation and maintenance of these parallel meters 

will cause disruptions at the monitored site [2].  On the 

other hand, NILM systems [3-5] are able to detect the status 

of loads by analyzing the current and voltage waveforms 

that are recorded by sensors installed a common electrical 

point (e.g., main electrical panel). NILM systems identify 

individual electrical devices through their load signatures; 

load signatures are the electrical behavior of a device during 

operation, which differs from device to device. A load 

disaggregation method is used to discern individual devices 

within the composite load signal [6]; the composite load 

signal refers to the net behavior of more than one device 

operating simultaneously. In general, the process of load 

monitoring by NILM systems can be broken down into 

three main steps [7]: 1) device profiling, 2) event detection, 

and 3) pattern recognition. In the device profiling step, 

current and voltage waveforms are captured and features are 

extracted from the waveforms. Changes in the features are 

flagged as events during the event detection step. Pattern 

recognition uses a trained classification algorithm to map 

events to electrical devices and their operation state (e.g., 

"on" or "off").  

   Devices can be distinguished by their load signatures 

during transient changes or during their steady-state 

operation, or some combination of the two. In this work, we 

investigate features that can be extracted from the current 

and voltage waveforms during steady-state operation. 

Experimental testing of a NILM system is performed using 

7 common household devices. 

II.    METHODS

A. Experimental Setup 

   A NILM system (Fig. 1) was constructed to monitor 

various electrical devices connected to a common power 

bar. The current and voltage waveforms were measured at 

the input of the power bar. 

   Current measurements were obtained using split-core AC 

current sensors (Magnelab, Longmont CO, USA; models 

SCT-0400-005, SCT-0400-010, and SCT-0400-020) applied 
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to the live electrical wire feeding the power bar, simulating 

the monitoring at single, common electrical point. Split-core 

current transducers are easily installed by clamping them 

around wire. Simultaneously, split-core current transducers 

do not disrupt the continuity of the electrical system 

maintaining the safety of the electrical system. The 

Magnelab split-core current transducers output a voltage 

(maximum 0.333 VAC) that is linearly proportional to the 

current. Three split-core current transducers, each with a 

different maximum current rating, were used to enable 

accurate monitoring over a large current range (the 

transducer with the highest sensitivity that has not reached 

its maximum rating was automatically selected for the 

current measurement). 

   A voltage transformer was used to step down the 120 

VAC voltage waveform to a 10 VAC output. A voltage 

divider circuit was used to further step down the voltage 

waveform to a range comparable to the output of the current 

transducer. Current and voltage measurements were 

digitized using a 12-bit analog-to-digital converter at a 

sampling rate of 1 kHz (National Instruments, Austin TX, 

USA, model USB-6008). Data were stored on a computer 

and processed offline using MATLAB. 

B. Data Acquisition 

   Seven household electrical devices (Table I) were used as 

loads in this study. To establish load signatures, each device 

was operated mutually exclusive of one another (i.e., 

electrical devices were not operated simultaneously). In this 

work, we consider electrical devices in one of two states 

(i.e., “on” and “off”). Multi-state electrical devices (e.g., 

microwave had different power levels) were used in only 

one of their operational states. Data were collected for from 

each device in its “on” state for 10 trials, with each 

measurement lasting 5 seconds. Data were collected during 

its steady state operation; that is, data collection 

commenced after the device under test was turned “on”. A 

total of 70 measurements were completed (7 devices × 10 

trials).

C. Feature Extraction  

   Each 5-second measurement was broken down into non-

overlapping 100 ms analysis windows (50 analysis windows 

per measurement, as partial windows were discarded). The 

real power value was computed from the current and voltage 

measurements in each analysis window. Real power 

provides one of the most complete sets of information to 

explain load characteristics; however, electrical devices may 

have similar real power levels, making them difficult to 

discern using real power alone. 

   Device loads can be resistive, inductive, or capacitive. If 

the load is purely resistive, then the current and voltage 

signals are in phase. On the other hand, if the load consists 

of capacitive and/or inductive elements, it will affect the 

phase difference between current and voltage signals. In 

particular, for capacitive loads, the voltage is delayed with 

respect to the current while the contrary happens for 

inductive loads [8]. In addition to the real power, the 

reactive power is also computed as a feature from each 

analysis window to establish the steady-state load 

signatures; the reactive power is the power associated with 

capacitive and inductive elements. 

D. Pattern Classification 

   Pattern classification was performed using discriminant 

analysis using Mahalanobis distances [9]. Classifier training 

was performed using 1 trial and classifier testing was 

performed using the remaining 9 trials. Cross-validation was 

performed by repeating the training and testing 10 times, 

such that each trial was used for training. There were a total 

TABLE I.   ELECTRICAL DEVICES USED IN EXPERIMENTAL SETUP, ALONG 

WITH THEIR MEAN REAL POWER AND REACTIVE POWER (  STANDARD 

DEVIATION), COMPUTED ACROSS ALL ANALYSIS WINDOWS.

Load Devices 
Real

Power (Watt) 

Reactive

Power (VAR) 

1 Microwave 802.1 ± 21.81 214.14 ± 8.08 

2 Electric kettle 785.66 ± 5.82 84.59 ± 1.19 

3 Coffee maker 602.02 ± 4.57 65.56 ± 0.92 

4 Laptop charger 65.95 ± 0.64 84.69 ± 2.01 

5 Incandescent lamp 58.44 ± 0.39 9.09 ± 0.12 

6
Computer LCD 

monitor 
28.71 ± 0.38 36.04 ± 0.51 

7 Fluorescent lamp 18.47 ± 1.44 26 ± 2.81 

Fig. 1.   Experimental setup for the NILM system. 
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of 31,500 test cases (10 repetitions ! 9 test trials ! 50 

analysis windows ! 7 devices). 

III.    RESULTS

   Table I lists the mean real power and reactive power for 

all the electrical devices (± one standard deviation). Table II 

and Table III show the classification confusion matrices for 

the real power and reactive power, respectively. The mean 

classification accuracies were 88.22% and 85.79% for real 

power and reactive power, respectively. When using the real 

power and reactive power, simultaneously, the classification 

accuracy increases to 100%; the associated confusion matrix 

is shown in Table IV. 

IV.    DISCUSSION

   High classification accuracy (88.22%) is achieved using 

the real power. This is not unexpected given the high 

repeatability of the real power measurements, indicated by 

the low standard deviation values in Table I. Table II 

indicates that load 1 (microwave) and load 2 (electric kettle) 

are the electrical devices that are misclassified most 

frequently; these devices were misclassified as each other 

and have comparable real power values, as well as the 

highest standard deviation values (Table I). 

  Electrical devices that have similar real power values may 

still be discernable through the reactive power. Using just 

the reactive power, a classification accuracy of 85.79% was 

achieved. Classification accuracy is lower than real power. 

Table III indicates that the majority of the misclassifications 

are load 2 (electric kettle) and load 4 (laptop charger) being 

misclassified as each other. Table I shows that these devices 

have similar reactive powers, which explains the 

misclassification. 

   From Table IV, it can be seen that using both real and 

reactive power, the classification accuracy increases to 

100%. Although some of the electrical devices had similar 

real powers or similar reactive powers, devices were 

dissimilar when real and reactive powers were considered 

simultaneously, enabling the increased classification 

accuracy.

   Results are encouraging for the condition when a single 

electrical device is in operation. Fig. 2 shows an example of 

a real power waveform when multiple electrical devices are 

operated simultaneously. Device recognition is more 

complicated in such a scenario. The real power waveform 

exhibits step changes that correspond to events (i.e., 

electrical devices turning "on" or "off"). While device 

recognition is more complex when multiple devices are 

operated simultaneously, the method of classification may 

not differ much from device recognition when they are 

operated separately. In this work, real power and reactive 

power were computed with respect to the “off” state. For 

multiple devices, events can be detected as change in the 

steady-state values. Electrical devices can be identified 

examining the difference in real power and reactive power, 

before and after an event. This methodology is applicable 

TABLE II.   CLASSIFICATION CONFUSION MATRIX FOR REAL POWER.

MEAN CLASSIFICATION ACCURACY 88.22%. 

 Predicted load 

Load 

1

Load 

2

Load 

3

Load 

4

Load 

5

Load 

6

Load 

7

A
ct

u
al

 l
o

ad
 

Load 1 3604 896 0 0 0 0 0 

Load 2 2704 1796 0 0 0 0 0 

Load 3 0 0 4500 0  0 0 0 

Load 4 0 0 0 4500 0 0 0 

Load 5 0 0 0 111 4389 0 0 

Load 6 0 0 0 0 0 4500 0

Load 7 0 0 0 0 0 0 4500 

TABLE III.   CLASSIFICATION CONFUSION MATRIX FOR REACTIVE 

POWER. MEAN CLASSIFICATION ACCURACY 85.79%. 

 Predicted load 

Load 

1

Load 

2

Load 

3

Load 

4

Load 

5

Load 

6

Load 

7

A
ct

u
al

 l
o

ad
 

Load 1 4500 0 0 0 0 0 0 

Load 2 0 2269 0 2231 0 0 0 

Load 3 0 0 4500 0 0 0 0 

Load 4 0 1786 0 2714 0 0 0 

Load 5 0 0 0 0 4500 0 0 

Load 6 0 0 0 0 0 4041 459 

Load 7 0 0 0 0 0 0 4500 

TABLE IV.   CLASSIFICATION CONFUSION MATRIX FOR REAL POWER AND 

REACTIVE POWER. MEAN CLASSIFICATION ACCURACY 100%. 

 Predicted load 

Load 

1

Load 

2

Load 

3

Load 

4

Load 

5

Load 

6

Load 

7

A
ct

u
al

 l
o

ad
 

Load 1 4500 0 0 0 0 0 0 

Load 2 0 4500 0 0 0 0 0 

Load 3 0 0 4500 0 0 0 0 

Load 4 0 0 0 4500 0 0 0 

Load 5 0 0 0 0 4500 0 0 

Load 6 0 0 0 0 0 4500 0

Load 7 0 0 0 0 0 0 4500 

Fig. 2.   Example of a composite real power waveform for multiple 

electrical devices. Numbers indicate events (i.e., devices turning "on" or 

"off"): (1) Laptop charger: On, (2) Electric kettle: On, (3) Microwave: 

On, (4) Microwave: Off, (5) Computer LCD Monitor: On, (6) Coffee 

maker: On, (7) Electric kettle: Off, (8) Microwave: Off, (9) Laptop 

charger: Off, (10) Computer LCD Monitor: Off.

5309



when the load signature feature meets the feature-additive 

criterion, which the real power and reactive power do [6]. 

   This work has only examined the steady-state load 

signature. Fig. 3 shows the current waveform for three 

different electrical devices as they transition from the “off” 

to “on” state; one can see that each device has a unique 

transient load signature that can be used to discern devices. 

Devices with similar real power and reactive power may 

still be distinguished based on their transient load 

signatures. Combining transient and steady-state load 

signatures serves as a means to improve device recognition 

accuracy. In addition, one can observe that the current 

waveform for the fluorescent lamp is not sinusoidal (Fig. 

3c); additional steady-state features, such as harmonic 

content, can be used to further supplement the load 

signature. 

V.    CONCLUSIONS 

   A NILM system has been successfully demonstrated for 

the recognition of electrical devices when operated 

separately. Real power and reactive power are useful 

features to identify electrical devices and can serve as 

effective complementary features to one another. 

   In future work, we will experiment with the features 

proposed in this paper, along with the addition of other 

steady-state and transient features in order to determine 

robustly the operating state of certain classes of devices, 

such as low power loads, multi-state devices, continuously 

varying power devices, and devices with different power 

cycles. Research is also being extended to examine multiple 

devices in operation simultaneously, along with methods to 

disaggregate the individual loads from the composite signal. 

In addition, the work presented here employed a simple 

classifier (discriminant analysis). Advanced classifiers can 

likely achieve high classification accuracies even for a 

larger group of electrical devices and during simultaneous 

operation of multiple devices, and will be more suited for 

transient analysis (e.g., time delay artificial neural network 

and hidden Markov models). 
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