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Abstract— The work presented in this paper is part of our 

investigation in the ROBOSKIN project. The project aims to 

develop and demonstrate a range of new robot capabilities 

based on robot skin tactile feedback from large areas of the 

robot body.  The main objective of the project is to develop 

cognitive mechanisms exploiting tactile feedback to improve 

human-robot interaction capabilities.  The project aims also to 

investigate the possible use of this technology in robot-assisted 

play in the context of autism therapy.  

 This article reports progress made in investigating tactile 

child-robot interactions where children with autism interacted 

with the humanoid robot KASPAR equipped with the first 

prototype of skin patches, introducing a new algorithm for 

tactile event recognition which will enhance the observational 

data analysis that has been used in the past. 

I. INTRODUCTION 

OUCH is a key element in social development. The need 

for human contact starts from the moment a baby is born.  

Various studies have shown that skin-to-skin contact of 

mothers with their newborn babies has a long lasting effect 

in later stages of life on the children’s intelligence and 

comprehension. During the sensorimotor stage in Piaget’s 

theory of development, children use their senses to learn 

about the environment. Touch is regarded as the first 

modality to be developed and is suggested to be the most 

prominent exploratory sense at this stage [1]. Ibraimov 

further illustrates how the sensitivity of our skin receptors 

informs us of our internal and external environment [2].  

 Physical touch is one of the most basic forms of 

communication. Tactile sensing can help to provide 

awareness of one’s own self and each other. Tactile 

interaction of children is often situated in a play context. The 

World Health Organisation in its ICF-CY (International 

Classification of Functioning and Disabilities, version for 

Children and Youth) publication considers play to be one of 

the most important aspects of a child’s lifewhen assessing 

children’s quality of life [3]. During play children can learn 

about themselves and their environments as well as develop 

cognitive, social and perceptual skills [4]. In the playground, 

touch and physical contact are used by children to 
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communicate, to build trust, to give or receive support and to 

develop their social relationships. In therapy, the tactile 

sense can be used individually to increase self knowledge, 

body image, to achieve sense of stability, and build 

confidence. The touch of another person, when it happens, is 

seen also as a way of breaking through isolation. It has a 

social element, a sense of community that positively affirms 

the patients [5], [6]. Touch deprivation in early stages, can 

lead to speech retardation, learning disabilities as well as 

emotional problems in later life [7-9]. 

In recent years there have been many examples of robots 

being used to involve children with special needs in play 

activities for therapeutic or educational purposes and various 

robotic systems have been developed to promote social 

interaction skills for people with and without cognitive 

and/or physical impairments. Research shows that robots can 

provide a focus of attention [10] and promote spontaneous 

play in children with developmental disorders [11]. Artificial 

pets such as the baby seal Paro [12] [13], the teddy bear 

Huggable [14], the cartoon-like robot Keepon [15] and 

humanoid robots such as the robotic doll Robota [16] [17] 

[18]  and the child-sized robot KASPAR [19] were designed 

to engage people in personal experiences stimulated by the 

physical, emotional and behavioural affordances of the 

robot. The robots have been used to engage children in 

playful interactions and helped them in developing social 

skills. This is a growing area of research with potentially 

great benefits for people with special needs. 

A. Autism and tactile interaction 

Autism is a lifelong developmental disability that affects 

the way a person communicates and relates to people around 

them. It is a disorder with a range of manifestations  that can 

occur to different degrees and in a variety of forms [20]. The 

main impairments that are characteristic of people with 

autism lie in the areas of social interaction,  communication 

and social imagination [21]. People with autism usually have 

difficulties in understanding gestures and facial expressions, 

difficulties with verbal and non verbal communication, and 

are usually impaired in understanding others’ intentions, 

feelings and mental states.  

Some people with autism are hyper-sensitive. This 

condition results in having overwhelming sensation where  

touch can be excruciating and the fear of being touched  can 

cause a panic attack [22, 23]. Others might be hyposensitive. 

Those with hypotactility seem not to feel pain or 

temperature. Their touch of other people or objects would 

not be perceived by them and unintentionally they could hurt 
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other people, or break objects. A dysfunctional tactile 

system may also lead to self-imposed isolation. 

The nature of touch is very individual to a person. A robot 

with tactile sensing could be used initially to mediate 

indirect contact with another person and may allow a person 

with autism to explore touch in a way which could be 

completely under his/her control. 

II. THE EXPERIMENTAL INVESTIGATION 

The trials took place in a pre-school class for children 

with autism in Hertfordshire, UK. The trials were designed 

to allow the children to get used to the presence of the 

investigator, get familiar with the robot and to have 

unconstrained interaction with the robot with a high degree 

of freedom, should they wish to.  They were conducted in a 

familiar room often used by the children for various 

activities. Before the trials, the humanoid robot was placed 

on a table, connected to a laptop. The investigator sat next to 

the table. The trials were designed to provide a reassuring 

environment where the repetitive and predictable behaviour 

of the robot is a comforting factor. The robot, which was 

equipped with tactile sensing capabilities, could respond 

autonomously when touched (see Figure 1) as well as  being 

operated by a remote controlled keypad. The play scenarios 

were based on ‘cause and effect’. The child-robot 

interactions were videotaped and data from the tactile 

sensors was logged for subsequent analysis and testing of a 

new event identification technique that can enhance current 

video analysis methods. 

A. The Robotic Platform  - KASPAR 

KASPAR is a child-sized minimally expressive robot 

which acts as a platform for HRI studies, using mainly 

bodily expressions (movements of the hand, arms and facial 

expressions) and gestures to interact with a human (see 

Figure 3). The robot has a static body (torso, legs and hands 

do not move and were taken from a child-sized 

commercially available mannequin doll) with an 8 DOF 

head and two 3 DOF arms.   For a complete description of 

Kaspar’s design rationale, hardware, and application 

examples see [24].  

B. Skin Sensors 

KASPAR is mounted with several skin patches on cheeks, 

torso, left and right arm, back and palm of the hands and 

also soles of the feet. The sensors are based on capacitative 

sensing technology with a layer of foam on the top, which 

allows for effectively reducing sensitivity and enabling a 

range of pressures to be distinguished. [25] 

 

In order to allow for easier coverage of robot body parts, 

the sensors are constructed by grouping a series of 12 touch 

sensitive taxels into a triangle made of flexible PCBs. Figure 

2 shows the manufactured triangles and a drawing of the 

taxels in their triangular arrangement as placed on both 

KASPAR’s cheeks.  

Table 1 presents the number of taxels on each sensor 

patch currently mounted on KASPAR.  

 

KASPAR Taxels 

Cheeks (left & right) 144 

Torso 144 

Left Arm 48 

Right Arm 48 

Left Hand Back 108 

Left Hand Palm 84 

Right Hand Back 108 

Right Hand Palm 84 

Left Foot 36 

Right Foot 36 

Total 840 

Table 1: Number of taxels currently mounted on different body 

parts of KASPAR. 

 
1 The tactile skin patches were developed by the Italian Institute of 

Technology (IIT), Genoa, Italy 
 

 
Figure 1- Tactile interaction: a child playing 'cause and effect' game with 
an autonomous robot.  

 

Figure 2 Left: Flexible PCB and triangular arrangement of taxels courtesy 
of Italian Institute of Technology; Right: Triangular arrangement for the 

patches on KASPAR’s cheeks. 

            
Figure 3 The robot Kaspar. The figure on the left shows the 'undressed' 

version revealing the tactile skin patches1.  
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III. EVENT ONSET IDENTIFICATION  

During each interaction session, data from all taxels on 

each patch is recorded in separate files identified by their 

specific patch name, e.g. ‘left arm’ and the date and time of 

the recording. The recorded values are integer numbers 

ranging between 0 and 255. The sampling rate is roughly 50 

Hz. Each data sample is tagged with a timestamp and also 

date and time of the sample. For the example patch on the 

left arm, this includes 48 columns of sensed values (byte), 

with the number of rows relevant to the length of each 

interaction session. As mentioned earlier, the objective of 

this study was to devise an automatic event identification 

technique that can enhance and speed up current video 

analysis methods. Automatic identification of interaction 

styles can allow for creating more adaptive human-robot 

interaction. Studies by Francois et al. [26, 27] presented the 

application of a self-organising map and Fast Fourier 

Transforms (FFT) towards identifying the interaction type 

and interaction adaptation accordingly.  Similarly, correct 

identification of the touch type in this study would allow for 

adjusting the interaction style accordingly.   

A.  Algorithm used  

In order to identify touch events on each sensor patch, the 

following algorithm is applied to each of the recorded patch 

data. These are implemented using MATLAB.  

At first, all sample data from each patch is passed through 

a threshold pass (step 1 in Figure 4) with customised 

maximum and minimum pass values. These values are 

determined by experimenting on a sample triangle. The main 

goal of the threshold pass filter is to reduce the data matrix 

to only those rows and columns containing touch events. 

The result of the threshold pass filter contains a series of 

rows of the recorded taxels with values within the desired 

range (50 < value < 240).  

To identify the main triangle/taxel where maximum 

pressure is applied, this is passed to the second stage of the 

algorithm. This results in a taxel with maximum value 

during each event passing the threshold filter. 

At the third stage, all those sequential events that can be 

part of the same touch event are reduced to one event. This 

is done by comparing row indexes for the identified touch 

episode, since each touch event has both spatial and 

temporal features and as this study is concerned with the 

event onset, information with regard to the duration of each 

touch event can be discarded by finding first instance of 

each touch episode. Assuming that a touch episode is 

presented as a series of time-stamped touch recordings, the 

algorithm selects the first touch recording from each 

episode.   Figure 4 presents a table alongside the algorithm 

indicating the dimensionality reduction for the case of the 

patch mounted on the back of the left hand.  

The final stage is to confirm these events, shown in Figure 

6, versus the videos recorded during each session. This is a 

very time consuming procedure but necessary to verify 

effectiveness and accuracy of the chosen approach. For each 

of the identified events, the time of event is extracted and 

matched to a time frame on the video recording. An 

experienced observer then confirms each correct 

identification by giving it a score of 1, and each incorrect 

case is scored with 0.   

B. Identification accuracy  

During the verification stage, each touch event identified 

by its time is then traced and confirmed or rejected as a 

genuine touch event. As a result, a table consisting of all 

automatically identified touches and those verified, rejected 

or ignored is formed.  

This study automatically identified 100 touch events, and 

out of these, 84 events were verified while 16 touch events 

were labelled as incorrect due to the mismatch in frame 

time. A total of further 4 touch events were labelled as 

missed, indicating that the automatic event identifier missed 

an event, which has been detected by the independent 

assessor. Figure 5 presents two events as identified by the 

assessor. 

 

 
Figure 4. Algorithm used for event onset identification and verification. The 

table on the right shows the dimension reduction at each stage for one of the 

recorded files from the back of the left hand with 108 taxels.  
  

Figure 5 - video confirmation of detected events (torso and left hand) 
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IV. SENSING RESULTS AND ANALYSIS 

Automatic identification of the touch events using 

threshold filters, maximum pressure and first event detection 

allowed for reducing the dimensionality of the recorded data, 

and led to quick identification of the recorded touch events. 

These were then verified using the manual coding of the 

videos and the results showed 84 cases correctly identifying 

touch events of interest. The remaining 16 cases of touch 

events wrongly identified were further investigated. Five 

cases of this error are attributed to mismatch caused by the 

differences between the sampling frequency (50 Hz) and the 

number of frames per second for the recorded video (24 Hz). 

As the algorithm used the first event and discarded the train 

of events following each event onset, there are cases that this 

mismatch in sampling rate results in matching events with 

wrong time, for example the touch data presents the first 

touch at 14:53:37 while the video data shows a touch at 

14:53.38.  A further 5 cases of the error identified cases 

where sensors detected touch 1 second (20 samples or less) 

after the initial event.  The remaining 6 cases related to 

touch events detected without a relevant event observed on 

the video assessment. These are highlighted for further 

investigation of possible causes, including sensor 

temperature-response, slow capacitor discharge and sensor 

proximity sensitivity. Furthermore, 4 events were detected 

by the assessor and not by the automatic detection algorithm. 

It was thought that the touch seen on videos here were not 

strong enough to trigger a pressure value needed to pass the 

threshold bands. These were further inspected on the logged 

touch values and it was confirmed that these events did not 

pass the touch thresholds.  

In addition to the accuracy results, the results from 

automatic touch onset detection identified the torso as most 

popular location to explore with 22 correct touch events 

detected. The left and right hands had 10-11 correct touches 

and the right foot detected 13 correct events. Cheek, left foot 

and arms were of least interest with 1-3 touch events 

detected for each. These are visible in Figure 6. 

V. DISCUSSION AND FUTURE WORK 

The process of manual coding of behaviour based on 

video data is a well-known method e.g. in psychology, 

ethology, HCI and HRI, allowing an in-depth insight into the 

timing and frequencies of specific behaviours. However, it is 

a time consuming process with high cognitive demand on 

the coders. Analysing touch events using videos is inherently 

inaccurate as it is difficult to characterise the touch event, for 

example its strength over time. It is also possible that in a 

particular session, events are not captured due to occurring 

 
Figure 6. Event trains as automatically identified and before verification stage, ordered (top-down) as left hand back and palm, right hand back and palm, 

left arm, right arm, left foot, right foot, torso and cheek sensors. The vertical variations in each strip identify the pressure extents. Counter refers to sample 
numbers for the duration of the session (11 minutes and 15 seconds). 
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outside the camera’s view or hidden by obstacles in the field 

of view thus often leading to the use of multiple cameras in 

sessions which further adds to the time required to analyse 

the data.  

We have shown in this article that the automatic 

identification of touch events using tactile sensor recordings 

offered a high degree of accuracy (84 out of 100 cases), 

which can be further improved by addressing the identified 

causes. It is thought that the current algorithm can be further 

enhanced by identifying the peak touch event in any given 

series of touch events instead of its event onset. However, it 

is important to note that similar to other computational 

methods, the current auto-detection routines are prone to 

noise and therefore still depend on verification by an 

experienced assessor. The key advantage of the automatic 

onset detection is therefore to reduce the intensity and 

duration of the manual coding task.  

As well as improving on the current onset detection 

algorithm, further research is progressing on touch-type 

identification and classification using a combination of 

histogram-based characterisation and support vector 

machines. These are thought to further enhance automatic 

touch detection by allowing not only the identification of 

touch onset, but also its type and pressure using machine 

learning approaches.  

The touch event onset detection provides a new insight 

into the popularity of the interaction scenarios used, for 

example the case studied here shows that touching the torso 

was a popular event. This is because the robot laughed after 

each torso touch, which was introduced as ‘tickling the 

robot’.  Future work in this area can further utilise this 

method towards adaptation to individual interaction 

partner’s preferences and social interaction goals.  
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