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Abstract—This paper reports on studies involving brain-
machine interfaces (BMIs) that provide near-instantaneous 
audio feedback from a speech synthesizer to the BMI user. In 
one study, neural signals recorded by an intracranial electrode 
implanted in a speech-related region of the left precentral 
gyrus of a human volunteer suffering from locked-in syndrome 
were transmitted wirelessly across the scalp and used to drive a 
formant synthesizer, allowing the user to produce vowels. In a 
second, pilot study, a neurologically normal user was able to 
drive the formant synthesizer with imagined movements 
detected using electroencephalography. Our results support the 
feasibility of neural prostheses that have the potential to 
provide near-conversational synthetic speech for individuals 
with severely impaired speech output.  

I. INTRODUCTION 

ECENT years have seen the development of brain-
machine interfaces (BMIs) that allow the user to 

manipulate  computer cursors, virtual keyboards, and even 
external robotic arms. The neural inputs to these systems 
most commonly come from either intracortical electrodes or 
electroencephalography (EEG). In the current paper we 
focus on a specific subset of brain-machine interfaces: those 
aimed at restoring speech communication via real-time 
speech synthesis. Specifically, we describe two studies that 
utilize brain-machine interfaces to control the sound output 
of a formant synthesizer. The first utilizes a specialized 
intracranial electrode developed by Philip Kennedy and 
colleagues at Neural Signals, Inc. to collect electrical signals 
that are decoded into the first two formant frequencies of a 
speech signal. The second utilizes a 48-channel EEG system 
to drive the formant synthesizer. Future directions in BMI 
for real-time speech synthesis are then outlined. 

II. STUDY 1: AN INTRACORTICAL BMI FOR REAL-TIME 

VOWEL SYNTHESIS 

In December 2004, a locked-in brain stem stroke volunteer, 
ER, was implanted with a two-channel Neurotrophic 
Electrode [1] in speech motor cortex with the primary goal 
of decoding the neural activity related to speech production 
and providing an alternative means for communication.  The 
implantation procedure was approved by the Food and Drug 
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Administration (IDE G960032), Neural Signals, Inc. 
Institutional Review Board, and Gwinnett Medical Center 
Institutional Review Board.  Informed consent was obtained 
from the participant and his legal guardian prior to 
implantation.   

The implant was located in an area of motor cortex which 
was related to the movements of the speech articulators; we 
hypothesized that this region would allow the user to 
naturally control a real-time speech synthesizer. Localization 
of the implant involved first conducting a pre-operative 
fMRI study in which ER participated in imagined picture 
naming and word repetition tasks in an fMRI protocol.  The 
task revealed increased BOLD response in much of the 
normal speech production network, and the implantation site 
was chosen as the area of peak activity on the ventral 
precentral gyrus (location of the speech motor cortex).  
Details of the implantation procedure can be found 
elsewhere [1]. 

Neural spike clusters were identified from the multi-unit 
extracellular potential recorded from the Neurotrophic 
Electrode.  Briefly, the extracellular potentials were first 
bandpass filtered (300-6000 Hz), then a voltage threshold 
was applied (±10μV) using the Cheetah data acquisition 
system (Neuralynx, Inc., Bozeman, MT).  Threshold 
crossings were taken as putative action potentials, and an 
approximately 1 ms (or 32-point; hardware-dependent) data 
segment sampled at 30 kHz around each crossing was saved 
for classification analysis.  All spike waveforms were 
classified on-line using a convex-hull technique 
(SpikeSort3D, Neuralynx, Inc.) according to manually 
defined regions obtained from previous offline analysis.  
These cluster regions, once stabilized, were reused for each 
recording session.  In the current study, 56 spike clusters 
were identified across two recording channels (N1=29, 
N2=27), although this is likely an overestimate of the 
number of unique neural sources as some clusters may 
represent the same parent neural source and others may 
represent externally generated noise. 

The BMI for real-time control of the formant frequency-
based speech synthesizer used cluster firing rates smoothed 
via a continuous filter approach (see [2] for details).  The 
neural decoder translated the average firing rates from the 
56 clusters into estimated values of the first and second 
formant frequencies of the intended utterance utilizing a 
Kalman filter [3] based decoding algorithm.  Specifically, 
the formant space position (i.e. the first two formant 
frequencies, or simply formants) and velocities (i.e. 1st 
derivative of formants) were decoded from normalized unit 
firing rates.  A similar continuous filter decoder was 
developed by Kim and colleagues [4] to decode hand 
movement kinematics from human subjects.  The formant 
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frequencies were then used to drive an artificial speech 
synthesizer which played the synthesized vowel waveform 
from the computer speakers with a total system delay of less 
than 50 ms from neural firing to sound output.  Low system 
delays are necessary for fluent speech, as auditory feedback 
delays more than 200 ms are known to disrupt normal 
speech production [5].  

Control of the real-time speech BMI is analogous to two-
dimensional cursor control as previously demonstrated using 
intracranial BCIs in monkeys and humans.  The main 
difference lies in the nature of the “task space”; speech is 
represented in the auditory domain whereas cursor 
movement is carried out in the visuo-spatial domain.  
Speech production and perception are naturally acoustic 
tasks; as such auditory feedback is much more informative 
regarding our ongoing speech movements than visual 
feedback (which is lacking during self-generated speech). 
Formant frequencies are a natural choice for the auditory 
representation in our system for several reasons. First, the 
Neurotrophic Electrode was implanted near the border 
between left premotor and primary motor cortices in a 
location believed to be involved in planning upcoming 
utterances according to an established a neurocomputational 
model of speech production, the Directions into Velocities 
of Articulators (DIVA) model [6]. The DIVA model posits 
that speech motor trajectories are planned as formant 
frequency trajectories by the premotor cortex.  Second, the 
formant frequencies of speech are highly correlated with 
movements of the vocal tract articulators; e.g., changes in 
the first formant frequency are strongly related to 
upward/downward movements of the tongue and/or jaw.  
Finally, formant frequencies provide a convenient, low-
dimensional representation that can be used to synthesize 
many speech sounds, including all of the vowels. 

We first verified that formant frequency information was 
encoded in the neural signals from the implanted electrode. 
To do this, the subject was presented with artificially 
synthesized vowel sequences, played over computer 
speakers, consisting of repetitions of three different vowels 
(AA [hot], IY [heat] and UW [hoot]) interleaved with a 
neutral vowel sound (AH [hut]).  The vowels and vowel-
transitions were synthesized using a formant synthesizer 
according to predetermined formant trajectories. The subject 
was asked to attempt to speak along with the vowel 
sequence stimulus that was being presented. The data 
obtained in this paradigm was used for offline calibration of 
the real-time Kalman filter neural decoder.  Parameters for 
the Kalman filter decoder were estimated by performing a 
least squares regression of unit firing rates and the vowel 
sequence formant trajectories.  An offline analysis of the 
training data was performed to determine the correlations 
between two-fold cross-validated optimal linear 
combinations of ensemble unit firing rates and formant 
frequencies.  This analysis found statistically significant 
correlations in both F1 (r=0.49, p<0.001) and F2 (r=0.57, 
p<0.001), verifying the DIVA model prediction of a formant 
frequency representation in the speech motor cortex.  

We then allowed the subject to control the formant 
synthesizer directly using the BMI. He was first presented 
with a synthetic vowel-to-vowel sequence such as AH-AA 
and instructed to listen only during stimulus presentation.  
These stimuli were limited to two vowels (V1 V2) where V1 
was always AH and V2 was randomly selected between the 
three vowels AA, IY and UW. A production period 
followed in which the subject was instructed to attempt to 
produce the vowel sequence.  During the production period, 
the real-time neural decoder was activated and new formant 
frequencies were predicted from brain activity related to the 
production attempt every 15 milliseconds.  These formant 
frequencies were input to the formant synthesizer, which 
produced sound output at a delay of 50 ms from the neural 
signals.  

Over 25 experimental sessions, the subject attained 70% 
correct production on average after approximately 15-20 
practice attempts per session. Fig. 1 illustrates the within-
session learning effect.  Production trials were grouped into 
blocks (roughly four blocks of six trials per session) and 
analyzed for endpoint production accuracy and error.  Early 
trials (Block 1) show relatively poor performance which 
statistically significantly increases by Block 4 (p < 0.05; t-
test of zero slope as a function of block).  Vowel sequence 
endpoint error, defined as the Euclidean distance from the 
endpoint formant pair to the target vowel, significantly 
decreased from the session start to termination (p < 0.05; t-
test of zero slope as a function of block). A detailed 
description of the methods and results of this study can be 
found elsewhere [2], [7].   

These results show it is possible for a human subject to 
use a real-time BMI utilizing continuous formant frequency 
speech synthesis. Although the speech sounds used 
produced here are rudimentary, they indicate the promise of 
the direct speech synthesis BMI approach, particularly when 
one considers that 100-channel intracortical electrode arrays 
are now available for human implantation (as opposed to the 
2-channel electrode used here). 
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Fig. 1.  Improvements over time in success rate (top) and 
average endpoint error (bottom) as a function of block when 
using the intracortical BMI in the vowel production task. 

 

III. STUDY 2: A NON-INVASIVE BMI FOR REAL-TIME 

VOWEL SYNTHESIS 

Although intracortical BMIs offer the promise of gaining 
maximal information from individual neurons, the need for 
neurosurgery reduces the potential application of these 
systems to individuals with locked-in syndrome at present. 
Noninvasive BMIs using EEG have also proven useful for 
providing communication, typically via a typing process on 
a computer (see [8] for a review). Here we examine the 
potential of EEG for real-time speech synthesis. 

In this pilot study, a single subject participated in a single 
1-hour session in which he performed one off-line 
acquisition run for training the BMI decoder and three on-
line BMI control runs. In the acquisition protocol, the 
subject was visually and acoustically presented with 20 
repetitions of three vowel sounds (60 total trials) in random 
order, each 3 seconds in duration: AA, IY, or UW. For each 
vowel, the subject was asked to perform a different 
imagined motor action to elicit a sensorimotor rhythm 
(SMR) response: left hand movement for UW, right hand 
movement for AA and foot pressing for IY. Limb imagery 
was used for reliability and known EEG response; future 
work will involve speech imagery. The vowel was 
represented visually on a computer screen display of the 
formant plane (see Fig. 2) and acoustically by formant 
synthesizer output of the 2D formant pair using the Snack 
Sound Toolkit (KTH Royal Institute of Technology) through 

pneumatic insert earphones (Model ER-1, Etymotic 
Research, Inc.). After completing the acquisition protocol, 
the EEG activity of all electrodes were band-pass filtered 
between 5 and 25 Hz to capture the mu (8-12 Hz) and beta 
(12-25 Hz) frequency ranges which are known to be 
modulated by motor imagery. The filtered EEG was then 
common-average referenced and a running root-mean-
squared (RMS) magnitude was taken in overlapping 
windows of 100 ms. The RMS magnitude and target formant 
values were then used to train the coefficients of a Kalman 
filter decoder in which the desired outputs were the first (F1) 
and second (F2) formants of the target vowel sound. Leave-
one-out cross-validation was used to estimate the decoder 
weights; the data were split into 60 trials, and the decoder 
was repeatedly trained on 59 trials and tested on the 
remaining trial. Off-line decoder training resulted in a set of 
weights which map SMR band power into a two 
dimensional formant frequency. The locations of highest 
contribution to the formant mapping occurred over the left 
and right sensorimotor regions as expected given the limb 
motor imagery control paradigm. 

The trained Kalman filter decoder was used in a real-time 
feedback protocol in which the subject was first presented 
with a randomly selected 1.5 s target vowel sound visually 
and acoustically and instructed to perform the relevant 
imagined motor action during an 8 s response period 
following a random waiting interval (1-2 s in duration). 
During the response period, visual and/or auditory feedback 
corresponding to the decoder predicted formants was 
provided to the subject. Visual feedback consisted of a 
yellow cursor moving on the graphical formant plane. 
Auditory feedback was generated by the formant 
synthesizer. A trial was labeled correct when the predicted 
formants were within a circular target region 1.5 barks (a 
logarithmic frequency scale used in speech) in diameter and 
otherwise labeled incorrect. Two runs of 10 repetitions per 
vowel were conducted in which the subject received both 
auditory and visual feedback of the vowel sound and one 
run of 10 repetitions per vowel with only auditory feedback, 
for a total of 90 trials. The formant predictions at the end of 
each trial are shown in Fig. 2. AA trials are represented by 
squares, IY by circles and UW by triangles. Endpoints 
within the appropriate circular target are correct; those 
outside the target are incorrect. The mean accuracy over all 
trials was 0.71 and was not significantly different between 
audio-visual (0.75) and audio-only (0.63) trials, indicating 
the pilot subject did not heavily rely on visual information. 

The results of this pilot study indicate that, with current 
EEG-based BMI methods, it is possible to control a formant 
synthesizer to produce vowel targets. The speech 
“movements” produced by the current BMI are not yet fast 
and accurate enough to mimic normal human speech, but 
our initial results indicate that further research into EEG-
based BMIs for real-time speech synthesis are warranted. 
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Fig. 2.  Summary of pilot EEG-based formant synthesis BMI 
results. 

IV. FUTURE DIRECTIONS: BEYOND VOWEL SYNTHESIS 

The use of a formant synthesizer in the current studies 
limits the speech output to continuously voiced speech 
segments, namely vowels, diphthongs, semi-vowels, and 
glides. Most consonants cannot be produced without very 
precise manipulations of many parameters in a formant 
synthesizer, a process that is not suited to current BMI 
technologies, which are currently limited to low-dimensional 
control applications. In computer simulations of the DIVA 
model of speech production [6], we have demonstrated that 
it is possible to produce intelligible speech involving both 
vowels and consonants using a biologically based controller 
that plans movements of an articulatory synthesizer (e.g. [9]) 
using a 3-dimensional auditory planning space. We are 
currently developing real-time, low-dimensional speech 
synthesizers based on this concept.  

Further improvements in intracortical BMIs for speech 
communication will also occur as the electrode channel 
capacity of BMI systems continues to increase, and as our 
understanding of the neural representations underlying 
speech improves. Based on our initial results with BMIs that 
control of real-time speech synthesizers, as well as the 
impressive demonstrations of accurate computer cursor 
control with high channel capacity BMIs, we believe that 
BMIs which allow locked-in patients to produce synthetic 
speech at near-conversational rates are possible in the very 
near future. 
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