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Abstract— This paper presents a new identification method 
for the biomechanical parameters of human tissues for the 
purpose of improving the accuracy of dynamic organ simulation. 
We describe the formulation of the method, and also design a 
robotic system to implement the method using a robotic probe, a 
medical imaging device, and a numerical simulator for the finite 
element analysis (FEA). We carried out an experiment using an 
experimental system and a tissue phantom to verify the 
effectiveness of the method. The results of this experiment show 
that the Young's modulus of the tissue phantom can be 
estimated with the experimental system. We also compared the 
estimated values of the Young's moduli with the measured 
values from a rheometer.  These results confirm that the 
identification method and the system design, proposed and 
developed in this work, are effective for accurately simulating 
organ behavior. 

I. INTRODUCTION 

NE of the most challenging issues in the area of robot 
assisted surgery (RAS) is the development of control 

methods for surgical robots to manipulate soft tissue in the 
human body. Key examples of such soft regions include the 
breast, liver, and brain, with tumor of each of these 
recognized as a disease with global public health implications. 
Here, there is a peculiar difficulty derived from the 
characteristics of soft tissue; that is, organ deformation. The 
manipulation site is very soft, and it is easy for the force of the 
surgical tool to deform the tissue and, as a result, for the 
position of the target tumor to be displaced. Thus, surgical 
robots require control methods that compensate for tissue 
deformation to achieve a high level of accuracy.  

Several research groups have proposed surgical robot 
control methods to account for the soft tissue deformation by 
using deformable organ models. The robot control methods, 
which we call “organ model-based control methods,” 
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consider organ deformation using model-based numerical 
analyses so that precise and safe treatment can be realized. 
For example, Okamura et al. developed models for needle 
insertion force, tissue stiffness, friction force, and puncture 
force [1]. DiMaio and Salcudean proposed a system to 
measure the extent of planar tissue phantom deformation 
during needle insertion [2], [3]. Alterovitz, Goldberg and 
Okamura investigated the simulation of steerable needle 
insertion for prostate therapy [4], [5]. The authors reported 
the material properties of the liver to realize physically 
accurate deformable models, and investigated physical organ 
modeling for use in a surgical robot control method [6]-[8]. 
The authors also developed an integrated system with image 
guidance and deformation simulation for the purpose of 
accurate needle insertion [9]. 

Although organ model-based control methods have been 
expected to solve the problem of compensating tissue 
deformation as previously mentioned, an additional 
identification method for biomechanical properties of tissues 
in the target region is necessary to provide a reliable and 
practical RAS system. The performance of an organ 
model-based control method depends on the accuracy of the 
model behavior, which demands that material parameters be 
precisely defined. At the same time, however, it is difficult to 
determine the biomechanical properties of human tissues for 
the following two reasons. First, there is no method by which 
to measure accurately, directly, and non-invasively the 
distribution of tissue properties in the human body. Second, 
individual differences in the properties of human tissues, 
which inherently vary as a result of factors such as age, sex, 
clinical history, and living habits, make it increasingly 
difficult to determine the values of the material parameters. 
Thus, if no method for quantifying material parameters of 
human tissues is developed, the use of computer assisted 
dynamic simulation may lead to a reliability problem from a 
medical point of view.  

We have focused on the problem of uncertainty in the 
biomechanical parameters of human organ models, and in this 
work we propose a new method that allows the biomechanical 
parameters of human tissues to be identified. The primary 
objective of this paper is to present a new method to identify 
the values of the biomechanical parameters of human tissues. 
More specifically, this paper gives the formulations and a 
system design for the method. The secondary objective is to 
demonstrate the efficacy as well as the limitations of the 
proposed method based on experiments with a tissue phantom 
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and an experimental system, which uses force sensing data, 
ultrasound images, and finite element analysis (FEA). These 
efforts contribute to creating guidelines for developing new 
medical systems to identify the biomechanical parameters of 
human tissues.  

The rest of this paper is organized as follows. Section II 
presents the related works for this study, while Section III 
introduces the proposed method. Section IV discusses the 
experimental conditions to verify the proposed method. In 
Section V we present the experimental results and a 
validation thereof. We also discuss the efficacy and 
limitations of the method based on the results. Finally, 
Section VI presents our conclusions and describes areas for 
future research. 

II. RELATED WORKS 

In this section, we briefly review research related to 
biomechanical parameter identification problems. We have 
grouped the related works into the following two areas.  

1) Elasticity imaging: An approach is a measurement 
technique generally known as elastography, which involves 
the use of static or oscillatory deformations and sequential 
images during deformation using medical modalities such as 
MRI or ultrasound equipment [10]-[12]. These techniques are 
useful for enabling medical staff to real-timely visualize the 
distribution of tissues in the human body. The ability thereof 
to quantify biomechanical properties, however, is limited 
because the techniques typically depend on relative 
displacements field between sequential images. 

2) Inverse analysis: The other category is inverse analysis 
using a dynamic model of behavior of the tissue. The major 
advantages of this approach are accuracy and compatibility 
with simulations using models such as the finite element 
model (FEM). Hence, in recent years, several research 
projects have investigated identification methods for 
biological tissue properties. Wang et al. [13], [14] researched 
an identification method for properties of rheological objects 
based on a FE formulation. Sangpradit et al. [15] introduced 
the concept of a robotic indentation tool using FEA, and 
showed preliminary experiments for it. We researched the 
problem of determining the values of human material 
parameters for surgical use [16], [17]. In a previous work [17], 
we proposed a robotic palpation system to identify the 
biomechanical properties, and also pointed out potential 
limitations of systems dependently based on contact force 
measurements like palpation. Miga et al. addressed the 
inverse analysis method by using the FEM and medical 
images through which to identify the values of the model 
parameters [18], [19]. These works revealed the potential of 
the simultaneous use of measurement force and medical 
imaging to determine the properties of tissues. However, 
practical implementations of this kind of system and the 
validation thereof have not yet been reported in any detail, 
even though the conventional works have proposed 
conceptual schemes and basic numerical tests. In this paper, 
we report phantom experiments to evaluate a system to 

identify the biomechanical properties of tissues, where the 
system integrates robotics, medical imaging, and FEA 
components. It should be noted that the present paper 
contributes to the detailed presentation of our method, as well 
as to the validation thereof through a phantom experiment.  

III. METHOD  

The basic concept of the proposed method for 
identification of the biomechanical parameters of human 
tissues is to compare the behavior of the simulated tissue 
deformations obtained by model analyses with the actual 
deformations obtained by a robotic sensing system. We see 
this strategy as being a kind of inverse analysis problem. The 
reason for this is that the distribution of the biomechanical 
parameters, which determines the behavior of the human 
body deformation, must be estimated from the available 
measurements, which are related to the tissue deformation 
(Fig. 1, Fig. 2). In consideration of this scheme, we need to 
define metrics for similarity by which to evaluate the 
reproducible degree of the estimated values of the parameters. 
Here, medical images are useful as metrics for two reasons. 
First, medical images (e.g., ultrasound images) have the 
ability to show the deformation of the internal body, which is 
related to the factors of biomechanical properties in the 
human body. Second, there are several algorithms to measure 
similarity between two different images [20]. 

Based on the above considerations, we propose a new 
robotic method, the framework of which incorporates various 
components (Fig. 3), and its formula to identify the 
biomechanical parameters using medical images.  The 

 
 
Fig. 1.  The conceptual scheme of our proposed method for providing 
spatially distributed values of the biomechanical parameters of human 
tissue. 
 
 

 
 
Fig. 2.  The basic idea of our proposed method for identifying 
biomechanical parameters based on inverse analysis. 
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biomechanical parameters are identified so as to minimize the 
cost function, which is evaluated in a similarity evaluation 
using the medical images. The components of the proposed 
system are as follows. 

1) Sensing manipulator: The robotic manipulator is 
considered a data acquisition tool. The proposed system 
incorporates sensors for measuring the contact force and 
displacement at the point of contact on the human body by the 
robotic probe as well as devices for imaging the deformation 
of the internal body. 

2) Finite element analysis: We used the finite element 
method for tissue deformation modeling. In this paper, we 
consider only the linear static cases to simplify the problem 
and to keep the paper to a reasonable length. In this case, the 
relation between displacement and force is described by the 
FEM as the following linear algebraic equation: 

 
f = K u         (1) 

 
where f, K, and  u are the force vector, stiffness matrix, and 
displacement vector, respectively. In the finite element theory, 
the biomechanical properties θ  for each element area are 
associated with the stiffness matrix K [17]. Therefore, inverse 
analysis of the biomechanical parameters through FEA is 
available using measured values of force and displacement. 

3) Image warping using FEA: In the proposed method, a 
procedure of image warping through FEA is used to generate 
the metrics to measure the reproducibility of the real 
deformation of an object. The warped image is generated to 
be a simulation of an object in the deformation state from an 
image, which we call the “source image”, in the 
pre-deformation state. Image warping is carried out using the 
deformation field between pre- and post- displacement, which 
is calculated by FEA (Fig. 4). Here, since the displacement 
data at each nodal point in the FEA are spatially discretized, 
in this paper thin-plate spline (TPS) interpolation, which has 
been widely used as a non-rigid transformation method [20], 
[21], is carried out to generate a continuous deformation field.   

4) Similarity evaluation: In this paper, normalized mutual 
information (NMI) [20] is used as a similarity measure 
between the warped image and the image in the 
post-deformation state, which we call the “reference image”. 
NMI evaluates the similarity of two images using 
information-theoretic measures. Since a considerable number 
of studies have, in recent years, reported on the superior 
features of NMI for medical use, we chose this as the 
similarity metric for the proposed method. Here, the cost 
function to evaluate is described using NMI as 

 
Cost(θ) = - SimilarityNMI ( Imagewarped(θ), Imagereference ) . 
                                                                                      (2) 
 
We assume that the warped images will be most similar at 

the time when appropriate values of model parameters are set. 
Figure 5 shows the tendency of the relationship between the 
similarity measure and the subtraction of images. 

5) Parameter identification: Given the above, the proposed 
framework shown in Fig. 3 is available to identify the 
biomechanical parameters θ in the FE-model to minimize the 
difference between the warped image from the source and the 
reference image.  

 

))((
minarg

* 


 Cost           (3) 

 
The values of the parameters can be improved even during 
execution of the framework. 

IV. EXPERIMENTAL CONDITIONS 

In this section, we describe the conditions under which we 
conducted the experiment. The proposed method was 
executed using the test system we implemented. Given below 
are the details of our experimental setup. 

 

Fig. 3.  Overview of the proposed method. The framework incorporates a robotic force measurement 
component, a medical imaging component, and a finite element analysis component. The 
biomechanical parameters are identified to minimize the cost function, which is evaluated by the 
similarity evaluation process. 
 

Fig. 4.  Image warping using the deformation 
field generated by FEA. The continuous 
deformation field is calculated from the 
discretized deformation field in each nodal 
point on the FE-mesh. 
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A. Phantom 

Tissue-mimicking gelatin phantom was used as the organ 
phantom in the experiment. The materials were designed to 
provide the similar mechanical and ultrasonic characteristics 
of the biological tissue [22], [23]. Areas of (A) and (B) in the 
phantom simulated the tumor and the surrounding normal 
tissue (Fig. 6). The phantom was made into a rectangular 
solid (length: 90 mm, width: 90 mm, height: 96 mm). The 
mixture weight percentages of the areas were shown in Table 
1. We measured the actual stiffness of the areas in the 
phantom. Figure 7 shows the relation between shear stress 
and strain as measured by a rheometer (AR-G2, 
TA-Instrument, USA). Since gelatin is sensitive to 
temperature, the sample and the phantom were cooled to keep 
5 °C during the measurement and the experiment. Using 
linear regression analysis, we determined that the shear 
modulus of the area (A) and the area (B) were approximately 
GA = 21 kPa and GB = 6.0 kPa, respectively, where they were 

regarded as linear elastic objects. The relation between the 
Young's modulus E and the shear modulus G of a linear 
elastic object is calculated using Poisson's ratio v as follows: 

 
      E = 2(1+) G.             (4) 
 

It appears that Poisson's ratio for biological objects generally 
has a value close to 0.5. Thus, the approximate values of the 
Young's modulus for the areas were approximated as EA = 63 
kPa and EB = 18 kPa, respectively.  

B. Experimental manipulator 

An experimental manipulator, with one degree of freedom 
of linear movement by an actuator, was used to measure the 
load condition. A force sensor (MICRO 5/50-SA, BL 
AUTOTEC Ltd., Japan) and an ultrasound probe were 

 
Fig. 5.  Relationship between the similarity criteria and the subtraction 
of two different images. A warped source image and the reference 
image are displayed in red and green layers, respectively, in the same 
subtraction image. 
 

 

(a) (b) 
Fig. 6.  The phantom in the experiment.  
(a) Overview. (b) The size of the phantom. 
 

TABLE I 
WEIGHT RATIO PERCENTAGES OF THE PHANTOM AREAS A/B 

 Area (A) Area (B) 
Water 68.0 69.3 
Gelatin 29.1 14.9 
Sucrose 0.0 14.2 
Cellulose 2.9 1.0 
Citric acid 0.0 0.4
Pectin 0.0 0.2 

 

(a) (b) 
Fig. 7.  Elasticity properties of the gelatin phantom. 
              (a) Rheometer  (b) Relation of shear stress and strain 
 

 
Fig. 8.  The experimental setup. 
 

(a) (b) 
 

(c) 
 

(d) 

Fig. 9.  The ultrasound images. (a) Original image for the 
pre-deformation.  (b) Original image for the post-deformation. (c) ROI 
of the pre-deformation (source image). (d) ROI of the post deformation 
(reference image). 
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attached to the manipulator (Fig. 8). The reactive forces 
exerted on the probe were sampled by the force sensor. We 
calculated the moving distance of the probe from the value of 
the encoder attached to the motor. 

In the experiment, two datasets of ultrasound images and 
the measured reactive force were obtained. The first dataset 
includes an image for the source at the time when the reactive 
force is approximately zero. The other dataset includes an 
image for the reference at the time when the force is 9.0 N and 
the moving distance is 14.8 mm. Figure 9 shows the images 
and their region of interest (ROI) to evaluate the similarity. 
Ultrasound equipment (iU22, Philips) was used as the 
imaging modality in the experiment. This equipment is 
compatible with the proposed method due to the compactness 
of the probe and its ability for real-time visualization.  

C. Finite element analysis and image warping 

A FEM simulator was used to analyze the deformation 
during the load. In the experiment, we used a 
three-dimensional linear elastic model. The FE model used in 
the experiment includes 2853 nodes and 14029 elements. A 
conforming Delaunay tetrahedralization (CDT) was 
performed to generate the mesh data for the FEA, by using a 
well-regarded mesh generator TetGen [24] (Fig. 10). In this 
experiment, the software for FEA (Fig. 11), TPS, and NMI 
were implemented in C++ and Python by the authors. 

D. Biomechanical parameters and identification 

For these experiments, we chose the Young's modulus as 
the material property to be analyzed as this is one of the most 
important material parameters of the biological tissues in the 
deformation problem. In this experiment, we assumed 

uniformity of the phantom tissue. In this paper, the 
identification process was carried out using the downhill 
simplex method to minimize the cost function and 
concurrently optimize the values in the parameter vector θ  of 
the FE model, for which the method is a fast, general-purpose 
optimization approach to solving nonlinear problems. Under 
the consideration, the biomechanical parameters θ  to  be 
identified can be written as θ ൌ ሼEA, EBሽ. 

V. RESULTS AND DISCUSSION 

In this section, we present the experimental identification 
results using the proposed system. We also discuss the 
efficacy and the limitations of the method based on the 
results. 

Estimation experiments of the Young’s modulus were 
carried out using our test system. In the experiment, we 
assumed various values to be the initial estimation values of 
the Young’s moduli as shown in Fig. 12. In the experiment, 

(a)  (b) 
Fig. 12.  Estimation process of the Young's modulus of each area. (a) 
and (b) shows the results in the areas of (A) and (B), respectively. The 
initially estimated Young's modulus are 10 kPa, 20 kPa, 30 kPa, 40 
kPa, 50 kPa, and 60 kPa. The Young's modulus measured by the 
rheometer was shown as the dashed line.  
 

 
 
Fig. 13.  The subtraction images in the estimation process. A warped 
source image and the target image are displayed in red and green 
layers, respectively, in the same subtraction image. The initially 
estimated Young's modulus are 10 kPa, 30 kPa, and 50 kPa, 
respectively. The similarity of the image improved with the iterative 
optimization by the method.   
 

 
(a)  (b) 

Fig. 10.  The FEA conditions. (a) Regional condition.  (b) Mesh data. 
 

 
(a)  (b) 

Fig. 11.  The post-deformation state in the experiment. 
              (a) Phantom. (b) FEA. 
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the experimental setup we implemented worked well as we 
had designed. The values of the estimated Young’s modulus 
in the area (A) and (B) in the phantom were concurrently 
optimized by the experimental system. The estimated 
Young's modulus of the area (B) converged to the appropriate 
order compared with the measured values by rheometer. 
Therefore, this robot-assisted identification is a promising 
method. On the other hand, however, the Young's modulus of 
the area (A) was not sensitively estimated by the method. The 
findings from the present investigation suggest further studies 
of possible factors, including analyses of the stability, 
sensitivity, and accuracy of the identification algorithm, the 
effects of the volume occupied by the tissues, etc.   

VI.   CONCLUSION 

The purpose of our research was to develop a method to 
identify the values of the biomechanical parameters of human 
tissues. In this paper, we presented a new method and the 
design of a system to provide the parameters. The proposed 
system incorporates a robotic force sensing system, medical 
imaging system, and a numerical dynamic simulation system 
using FEA. We also described the method and the 
formulation of the proposed system. In experiments using a 
test system and a tissue phantom were carried out to 
demonstrate the feasibility of the proposed method. The 
experimental results reveal that the proposed method has the 
ability to quantitatively determine the elastic modulus of 
tissues. Several potential challenges regarding the future of 
this system are also discussed.  

We intend performing further analyses based on the 
findings obtained in this study. In addition, we will analyze 
studies on the complexities of properties of human tissues 
since these have mostly been conducted under the assumption 
that the tissues have inhomogeneous, anisotropic elastic and 
viscous, and non-linear behaviors, as recently reported [25]. 
We also intend developing a more practical system for 
clinical use that integrates the robotic system and dynamic 
simulation system.  

REFERENCES 
[1] A. M. Okamura, C. Simone, and M. D. O'Leary, "Force modeling for 

needle insertion into soft tissue," IEEE Trans. Bio-med. Eng., vol. 51, 
no. 10, pp. 1707-1716, Oct. 2004. 

[2] S. P. DiMaio and S. E. Salcudean, "Needle insertion modeling and 
simulation," IEEE Trans. Robotic Autom., vol. 19, no. 5, pp. 864-875, 
Oct. 2003. 

[3] S. P. DiMaio and S. E. Salcudean, "Needle steering and motion 
planning in soft tissues," IEEE Trans. Bio-med. Eng., vol. 52, no. 6, pp. 
965-974, June 2005.  

[4] R. Alterovitz, K. Goldberg, and A. Okamura, "Planning for steerable 
bevel-tip needle insertion through 2D soft tissue with obstacles," in 
Proc.2005 IEEE Int. Conf. Robotics and Automation (ICRA 2005), pp. 
1640-1645.  

[5] R. Alterovitz, A. Lim, K. Goldberg, G. S. Chirikjian, and A. M. 
Okamura, "Steering flexible needles under Markov motion 
uncertainty," in Proc.2005 IEEE/RSJ Int. Conf. Intelligent Robots and 
Systems (IROS’05), pp. 1570-1575. 

[6] Y. Kobayashi, A. Kato, T. Hoshi, K. Kawamura, and M. G. Fujie, 
“Parameter setting method considering variation of organ stiffness for 
the control method to prevent overload at fragile tissue,” in Proc. 2009 

IEEE Int. Conf. Intelligent Robots and Systems (IROS’09), pp. 
2155-2161. 

[7] Y. Kobayashi, A. Onishi, H. Watanabe, T. Hoshi, K. Kawamura, and M. 
G. Fujie, “Developing a planning method for straight needle insertion 
using probability-based condition where a puncture occurs,” in Proc. 
2009 IEEE Int. Conf. Robotics and Automation (ICRA’09), pp. 
3482-3489. 

[8] Y. Kobayashi, A. Onishi, T. Hoshi, K. Kawamura, M. Hashizume, and 
M. G. Fujie, "Development and validation of a viscoelastic and 
nonlinear liver model for needle insertion," Int. J. Comp. Assisted 
Radiol. and Surgery (CARS), vol. 4, no. 1, pp. 53-63, 2009. 

[9] Y. Kobayashi, A. Onishi, H. Watanabe, T. Hoshi, K. Kawamura, M. 
Hashizume, and M. G. Fujie, "Development of an integrated needle 
insertion system with image guidance and deformation simulation," Int. 
J. Computerized Med. Imaging and Graphics (CMIG), vol. 34, no. 1, pp. 
9-18, 2010. 

[10] J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, 
and T. Varghese, "Elastography: ultrasound estimation and imaging of 
the elastic properties of tissues," in Proc. Inst. Mech. Eng. Part H: J. 
Engineering in Medicine, vol. 213, no. 3, pp. 203-233, 1999. 

[11] M. Fatemi, L. E. Wold, A. Alizad, and J. F. Greenleaf, "Vibro-acoustic 
tissue mammography," IEEE. Trans. Med. Imaging, vol. 21, no. 1, pp. 
1-8, Jan. 2002. 

[12] B. J. Fahey, K. R. Nightingale, S. A. McAleavey, M. L. Palmeri, P. D. 
Wolf, G. E. Trahey, "Acoustic radiation force impulse imaging of 
myocardial radiofrequency ablation: initial in vivo results," IEEE Trans. 
Ultrasonics, Ferroelectrics and Frequency Control, vol. 52, no. 4, pp. 
631-641, April 2005. 

[13] Z. Wang, K. Namima, and S. Hirai, "Physical parameter identification 
of rheological object based on measurement of deformation and force," 
in Proc. 2009 IEEE Int. Conf. Robotics and Automation, pp. 
1238-1243. 

[14] Z. Wang and S. Hirai, "Modeling and property estimation of Japanese 
sweets for their manufacturing simulation," in Proc. 2010 IEEE/RSJ Int. 
Conf. Intelligent Robots and Systems (IROS 2010), Taipei, pp. 
3536–3541. 

[15] K. Sangpradit, H. Liu, L. D. Seneviratne, and K. Althoefer, "Tissue 
identification using inverse finite element analysis of rolling 
indentation," in Proc. 2009 IEEE Int. Conf. Robotics and Automation, 
pp. 1250-1255. 

[16] T. Hoshi, Y. Kobayashi and M. G. Fujie, “Developing a system to 
identify the material parameters of an organ model for surgical robot 
control,” in Proc. 2008 IEEE Biomedical Robotics and 
Biomechatronics (BioRob’08), pp. 730-735. 

[17] T. Hoshi, Y. Kobayashi, T. Miyashita, and M. G. Fujie, "Quantitative 
palpation to identify the material parameters of tissues using reactive 
force measurement and finite element simulation," in Proc. 2010 IEEE 
Int. Conf. Intelligent Robots and Systems (IROS’10), pp. 2822-2828. 

[18] C. W. Washington and M. I. Miga, "Modality independent elastography 
(MIE): a new approach to elasticity imaging," IEEE Trans. Med. 
Imaging, vol. 23, no. 9, pp. 1117-1128, Sept. 2004. 

[19] J. J. Ou, R. E. Ong , T. E. Yankeelov, and M. I. Miga, "Evaluation of 3D 
modality-independent elastography for breast imaging: a simulation 
study," Phys. Med. Biol., 53, pp. 147-163,  2008. 

[20] W. R. Crum, T. Hartkens, and D. L. G. Hill, “Non-rigid image 
registration: theory and practice,” British J. Radiol., vol. 77, pp. 
S140-S153, 2004. 

[21] T. M. Lehmann, C. Gonner, and K. Spitzer, "Survey: interpolation 
methods in medical image processing," IEEE Trans. Med. Imaging, vol. 
18, no. 11, pp. 1049-1075, Nov. 1999. 

[22] Ernest L Madsen et al , “Tissue-mimicking agar/gelatin materials for 
use in heterogeneous elastography phantoms,” Physics in Medicine and 
Biology, vol. 20,  pp. 5597-5618, 2005 

[23] Pavan, T.Z.; Carneiro, A.A.O.; Madsen, E.L.; Frank, G.R.; Hall, T.J.; , 
"Exploring the nonlinear elastic behavior of phantoms materials for 
elastography," Ultrasonics Symposium (IUS), 2009 IEEE International , 
vol., no., pp.463-466, 20-23 Sept. 2009 

[24] Hang Si, "TetGen: A Quality Tetrahedral Mesh Generator and a 3D 
Delaunay Triangulator", http://tetgen.berlios.de/ 

[25] M. Tsukune, Y. Kobayashi, T. Hoshi, T. Miyashita, and M. G. Fujie, 
“Evaluation and comparison of the nonlinear elastic properties of the 
soft tissues of the breast,” in Proc. 2011 Int. Conf. IEEE Engineering in 
Medicine and Biology Society (EMBC’11), (Accepted). 

 

5391


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

