
  

 

Abstract — We tend to look at targets prior to moving our 

hand towards them. This means that our eye movements 

contain information about the movements we are planning to 

make. This information has been shown to be useful in the 

context of decoding of movement intent from neural signals. 

However, this is complicated by the fact that occasionally, 

subjects may want to move towards targets that have not been 

foveated, or may be distracted and temporarily look away from 

the intended target. We have previously accounted for this 

uncertainty using a probabilistic mixture over targets, where 

the gaze information is used to identify target candidates. Here 

we evaluate how the accuracy of prior target information 

influences decoding accuracy. We also consider a mixture 

model where we assume that the target may be foveated or, 

alternatively, that the target may not be foveated. We found 

that errors due to inaccurate target information were reduced 

by including a generic model representing movements to all 

targets into the mixture. 

I. INTRODUCTION 

YE  movements can provide us with a huge amount of 

information about intended arm movements, since 

people usually look at a target before reaching to it [1]. This 

information could be useful for decoding intent, as needed 

for a range of rehabilitation applications including restoring 

movement control to individuals who have lost the use of a 

limb to paralysis. Eye tracking is often used to assist this 

population with computer interactions [2]. However, the 

success of these devices is limited by the fact that gaze alone 

is a problematic input signal. It can be challenging to 

determine which saccades are intended as control signals, 
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and it is quite difficult to control eye movements precisely 

for an extended period of time.  

 When the goal is to restore arm motion through electrical 

stimulation or the assistance of a robotic device, it is even 

more critical that saccades do not generate unintentional 

movements. Furthermore, the patient's ability to look around 

their workspace should not be restricted. It is therefore likely 

that gaze information would be most useful when combined 

with physiological signals under the user's voluntary control 

[3]. 

 A number of groups have shown that neural decoding can 

be greatly improved by taking advantage of the directional 

nature of reaching [4-7]. Following this logic, we have 

previously used target estimates from gaze information to 

enhance our model of the reach trajectory. Since a person 

could saccade to other locations in addition to the target 

during the period before a reach, we needed to account for 

uncertainty in the target estimates. We performed a mixture 

model, allowing for a probabilistic distribution of targets. 

This approach greatly improved our decoding of arm 

movements from electromyograms (EMG) [3]. 

 Here we considered what would happen as the quality of 

our target estimates declined. While eye movements are a 

powerful source of information about a patient's intended 

reach, it is imperative that the system be able to cope in the 

face of erroneous target estimates. A decoder that relies too 

heavily on the gaze data could potentially produce unwanted 

movements and be unsafe. We examined the effectiveness of 

the mixture model and its dependence on the availability of 

neural data. We also developed a solution to mitigate the 

worst-case-scenario that occurs when the correct target is not 

foveated. We defined a generic model which was our best 

estimate of the movement when the target was unknown, 

and incorporated it into the mixture. When only inaccurate 

target estimates are available, our solution will converge to 

that of the generic model based on the evidence from the 

EMG.  

II. METHODS 

A. Decoding Framework 

We evaluated our approach at decoding human movement 
over a wide range of dynamics. We recorded arm 
kinematics, EMGs and eye movements of able-bodied 
subjects during unconstrained 3D reaches to targets over a 
large workspace. Four subjects performed reaches at varying 
speeds, as they would in everyday life. Subjects were seated 
as they reached towards 16 LEDs in blocks of 150s, which 
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were located on two planes positioned such that all targets 
were just reachable (Fig 1). The target LED was lit for one 
second prior to an auditory go cue, at which time the subject 
would reach to the target. An approximate total of 450 
reaches were performed per subject. The subjects provided 
informed consent, and the protocol was approved by the 
Northwestern University Institutional Review Board. EMG 
signals were measured from the ipsilateral brachioradialis, 
biceps, two triceps, pectoralis major, and the three deltoid 
and upper trapezius muscles of the shoulder.  
 The EMG signals were band-pass filtered between 10 

and 1,000 Hz, and subsequently anti-aliased filtered. 

Hand, wrist, shoulder and head positions were tracked at 

60Hz using an Optotrak motion analysis system. We 

simultaneously recorded eye movements at 60Hz with an 

ASL EYETRAC-6 head mounted eye tracker. 

 100 reaches were assigned to the test set for each subject, 

and the rest were used for training. As the state we used 

hand positions and joint angles (3 shoulder, 2 elbow, 

position, velocity and acceleration, 24 dimensions). Joint 

angles were calculated from the shoulder and wrist 

marker data using digitized bony landmarks which 

defined a coordinate system for the upper limb as 

detailed by Wu et al. [8]. As the motion data were sampled 

at 60Hz, the square root of the mean absolute value of the 

EMG in the corresponding 16.7ms windows was used as an 

observation of the state at each time-step. We used the 

square root as it produced a more Gaussian-like distribution. 

B. Mixture of Targets Model 

 We employed the standard Kalman filter (KF) framework 

for decoding [9,10], assuming linear dynamics and Gaussian 

noise. We call this the generic KF trajectory model: 

                  
             (1) 

where x is the state vector, xt     represents the hand 

and joint angle positions, w is the process noise with 

p(w) ~ N(0,Q), and Q is the state covariance matrix. 

 To create a directional trajectory model, we added the target 

estimate to the state space (KFT), thereby linearly 

incorporating it into the trajectory model [7]: 

                     
             (2) 

where xTt    is the vector of target positions, with 

dimensionality less than or equal to that of xt. We also used 

a linear Gaussian observation model. 

 To account for the inevitable uncertainty in our eye-

movement based target estimates, we drew on the recent 

literature [4,11] and used a probabilistic mixture model 

(mKFT) over each of the N potential targets T: 

                             

  

    

          

 

(3) 

 where yt is the observation vector. We perform the KFT 

recursion for each possible target, xT, and our solution is 

a weighted sum of the outputs. The weights are 

proportional to the prior for that target (found from the 

gaze data), and the likelihood of the EMG given that 

target [3]. Thus, if the EMG data provides strong 

evidence in favor of one of the targets its weight will 

dominate and the prediction will quickly converge to that 

model.  

 As the targets were situated on two planes, the three-

dimensional location of the eye gaze was found by 

projecting its direction onto those planes. The first, 

middle and last eye samples for the second preceding the 

reach were selected as potential targets, and all other 

samples were assigned to a group according to which of 

the three was closest. The mean and variance of these 

three groups were used to initialize three KFTs in the 

mixture model. The priors of the three groups were 

assigned proportional to the number of samples in them. 

This procedure assumed that the subject was looking 

close to the correct target during at least one of the three 

selected times prior to movement. If the subject looks at 

multiple positions prior to reaching, this method ensures 

with a high probability that the correct target was 

accounted for in one of the filters in the mixture. 

 We compared the generic KF (with no target 

information) to the mKFT with different sets of EMGs, 

in an attempt to simulate the signals that might be 

available at different levels of spinal cord injury (SCI). 

To simulate a C4 injury we used just the upper trapezius, 

we added the deltoids, brachioradialis, biceps and 

pectoralis major for C5, and for C6 we also added the 

triceps [12]. Algorithm accuracy was quantified by the 

multiple R
2
 [13]. 

C. Sensitivity to Errors in Target Estimates 

Due to attentive subjects and idealized experimental 

conditions, the gaze recordings in our experiments were of 

reasonably high quality. This is unlikely to be true outside of 

a laboratory setting. We therefore simulated target estimates 

of varying quality to evaluate the effect on performance. 

This was done by assigning two potential targets to each of 

the reaches: its correct target and another which was 

randomly selected from the set of all targets. We evaluated 

the accuracy of the mKFT where the prior probabilities 

assigned to the correct and incorrect targets were varied, 

again at different levels of simulated SCI. 

D. Adding a Generic Mixture Component 

In the worst-case-scenario, which would occur if the 

subject looked in a completely different location, the correct 

 
Fig. 1.  Experimental setup.  
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target would have a zero prior. In this case, with no 

knowledge of the target, our best possible estimate of the 

state would come from the generic KF. To take advantage of 

this, we added a generic mixture component with a prior 

probability of 0.1; either the correct or random targets were 

given a prior of 0.9, thereby simulating the extremes of the 

analysis described above. If the EMG signals provide strong 

evidence that the generic KF is more appropriate than the 

KFT component, the weight for the generic component will 

converge to 1 through the likelihood term. Our solution will 

thus be close to that of the generic KF, which is preferable 

when the KFT has been initialized with an inaccurate target. 

III. RESULTS 

A. Decoding Performance with Gaze and EMG 

For all simulated SCI levels, the mKFT outperformed the 

KF. The accuracy of the mKFT was quite consistent from 

C6 - C5, however it was reduced somewhat for C4. The 

generic KF degraded more dramatically at the simulated C4 

level, as would be expected from a non-directional model 

with only a single EMG source (Fig 2A).  

Because all targets were in front of the subject, a 

substantial component of the R
2
 was related to the outward 

component of the reach common to all targets.  This can be 

seen in the R
2
 of nearly 0.5 for the generic KF at C4; the 

decoded trajectories for this condition had errors similar to 

those for a decoder that consistently predicted a reach to an 

average target location, regardless of the actual target. To 

better evaluate final reach accuracy we also calculated the 

target variance accounted for (VAF) by scaling the squared 

error at the end of the reach by the variance of the target 

locations. Using this measure (Fig 2B), it can be seen that 

the generic KF at C4 is unable to decode endpoint target 

location. This is illustrated in the example reach shown 

above (Fig 3), where the generic KF at C4 does well in the 

vertical (Z) and outward (X) directions, but its lateral 

prediction (Y) is completely inaccurate. Bearing this in 

mind, we will report multiple R
2
 for the trajectory for the 

remainder of the paper to provide a measure of decoding 

accuracy encapsulating all dimensions relevant to our 

experiment. 

B. Simulated Target Estimates 

 Unsurprisingly, performance of the mKFT was best when 

the correct target was given a prior probability of 1 (the KFT 

case). There was a small drop in accuracy when the random 

target was given a nonzero prior. As the prior for the correct 

target was reduced from 0.9 to 0.1, the drop in accuracy was 

relatively small in the simulated C6 - C5 cases. However, at 

C4 the influence of the assigned priors became more evident 

(Fig 4). With only the upper trapezuis EMG with which to 

perform the likelihood calculation, the decoder does not 

converge to the correct trajectory as quickly or reliably. 

Nonetheless, the mKFT was significantly more accurate than 

the generic KF so long as the correct target was represented 

in the mixture, no matter how small its prior. However, 

when the random target was given a prior of 1, the KFT  

performance dropped well below that of the generic KF.  

C. Adding the Generic Mixture Component 

Adding the generic KF into the mixture greatly reduced the 

errors of the mKFT with the incorrect target (Fig 5A). At the 

simulated C6 and C5 levels, it performed as well as the 

generic KF, and at C4 it was only slightly worse. While the 

weight for the generic KF was initialized at 0.1, it quickly 

increased as likelihood of the EMG provided evidence that 

the KFT component was less accurate (Fig 5C). There was, 

however, a small cost to the accuracy of the mKFT where 

the target was correct, as a higher weight was assigned to the 

generic KF for a low proportion of the time (Fig 5B).  

 
 

Fig. 4. Mean and standard error R2 for the generic KF and mKFT, for 

which the prior probabilities assigned to the correct and random 

targets are shown in the legend.  

 
Fig 3. Sample reach and predictions of A mKFT and B generic KF for 

different simulated injury levels. 

 
 

Fig. 2. Mean and standard error for A Trajectory R2 and B Target 

VAF for mKFT and generic KF with different simulated injury levels, 

using gaze information for target priors. 
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IV. DISCUSSION 

 Incorporating eye tracking information significantly 

improved our decoding performance, particularly when there 

was very limited EMG available. When we don't have many 

neural signals to decode from, a strong choice of trajectory 

model becomes even more important. We cannot expect a 

patient's gaze information to be highly informative all the 

time, however. Here we simulated target information of 

varying quality to see how our approach might perform in a 

more realistic functional environment. We found that the 

mixture model performed well when faced with noisy target 

information. By incorporating an additional generic KF into 

the mixture, we avoided a degradation in performance when 

the target estimate was incorrect.   

 The increased sensitivity of our mixture model to the 

target priors when the EMG is limited may present a 

problem for implementing our approach in the high 

tetraplegia population, where there are few remaining 

control signals. Over-reliance on the eye movement 

recordings would be unacceptable, and it is critical that our 

proposed system does not impinge on the functionality that 

remains available to the patient population. Encouragingly, 

there was a significant benefit to incorporating the target 

information even when the prior for the correct target was 

very low. 

 In a closed-loop BMI application, the user can modify 

their behavior to improve decoding as they receive feedback. 

We expect that the inclusion of target information will 

reduce their cognitive burden by increasing the decoder's 

reliance on the trajectory model relative to the continuous 

control signals. If the target estimates are all inaccurate 

however, it is important that we avoid making inappropriate 

predictions that worsen the situation. We think that by 

including the generic KF  in the mixture we could provide 

the user with the opportunity to overcome these effects by 

relying more heavily on their voluntary control signals. 
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Fig. 5. A: Mean and standard error R2 for generic model and mixture 
of generic model and KFT with correct and random targets. B, C: 

Histogram of the weights assigned to the generic model in the C6 

case, for the correct and random target mixtures respectively. 
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