
  

  

Abstract—Trajectory-based models that incorporate target 
position information have been shown to accurately decode 
reaching movements from bio-control signals, such as muscle 
(EMG) and cortical activity (neural spikes). One major hurdle 
in implementing such models for neuroprosthetic control is that 
they are inherently designed to decode single reaches from a 
position of origin to a specific target. Gaze direction can be 
used to identify appropriate targets, however information 
regarding movement intent is needed to determine when a 
reach is meant to begin and when it has been completed. We 
used linear discriminant analysis to classify limb states into 
movement classes based on recorded EMG from a sparse set of 
shoulder muscles. We then used the detected state transitions to 
update target information in a mixture of Kalman filters that 
incorporated target position explicitly in the state, and used 
EMG activity to decode arm movements. Updating the target 
position initiated movement along new trajectories, allowing a 
sequence of appropriately timed single reaches to be decoded in 
series and enabling highly accurate continuous control. 

I. INTRODUCTION 
ATIENTS who have spinal cord injuries at the C5-C6 
level typically maintain residual function in their 

shoulder and elbow flexors, but lose the ability to extend the 
arm [1]. This provides limited control of shoulder and arm 
movement, but results in an inability to reach. Residual 
muscle activity can be measured using electromyography 
(EMG) and used as a control signal to drive restorative 
devices or models of predicted movement intent [2]. 

The Kalman filter (KF) is a method of probabilistically 
predicting the evolution of a system’s state over time [3]. It 
recursively combines information from an observation 
model, which describes the relationship between measured 
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variables and the system state, with that of a trajectory 
model describing how the state changes probabilistically 
over time. In the example of predicted reach dynamics, the 
arm would represent the system, and its state would typically 
include kinematic measures (e.g. position, velocity, and/or 
acceleration) of limb segments and/or joint angles. KFs have 
been used to control computer cursors, prosthetic devices, 
and functional electrical stimulation using biological signals 
such as neural spikes and EMG [4-6]. 

EMG activity can be interpreted as a noisy observation of 
the limb state and used to predict the evolution of arm 
movement over time. The accuracy of predictions, however, 
depends on both the variety of muscles recorded from and 
the range of trajectories used to train the model. When a 
single reach trajectory is of interest, movement along this 
trajectory can be accurately reconstructed from a very sparse 
number of control sources. As the number of possible 
trajectories increases, however, limited degrees of freedom 
in the control signal can cause the KF to degrade to 
essentially a random drift model. If the number of potential 
targets is limited, a mixture of trajectories model (MTM) can 
be implemented based on known target information [7]. 
Alternatively, information about the position of the intended 
target can be included as a component of the Kalman filter’s 
state (KFT) [8, 9]. This dramatically improves the accuracy 
of predicted movements toward even novel targets across a 
broad workspace, without the need for increased degrees of 
freedom in the control signal. 

Information about the intended target during an active 
reach can be derived using gaze tracking, based on the fact 
that individuals tend to look at intended targets prior to 
reaching for them [10]. The timing between gaze and 
movement toward an intended target may vary, however. To 
compensate for this, multiple gaze points representing 
multiple potential targets can be combined probabilistically 
in a mixture of Kalman filters (mKFT) that allows for 
uncertainty in the target information [9]. 

mKFTs have been shown to predict limb movements from 
EMG activity during discrete reaches with high accuracy, 
however functional clinical implementation would likely 
require movements to be decoded in continuously. Using the 
same framework, new arm movements can be initiated in an 
efficient way by merely updating the target information. 
Doing so for a series of discrete reaches would result in 
continuous control. The challenge therefore lies in selecting 
a command signal to trigger target updates that is intuitive to 
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the user and can differentiate active reaches to targets the 
subject is likely to look at from withdrawal movements that 
are likely to be unrelated to gaze direction. Machine learning 
techniques have previously been shown to detect state 
transitions accurately from movement related neural data, 
allowing discrete changes in decoder architecture to be made 
on the fly during continuous decoding [11]. Similar methods 
could be applied to the movement related EMG activity that 
is already being used as a control signal for the mKFT in 
order to detect state transitions and update target information 
in the decoder. 

Here, we have investigated the ability of an mKFT to 
decode movement continuously from a limited set of EMG 
signals during a series of reaches. To gauge the ideal 
performance of this method, we initially updated target 
information based on changes in measured velocity of the 
actual movement signal and the known target locations. In 
order to gauge more realistic performance without the need 
for an explicitly generated transition signal, we also 
investigated a method of detecting movement onset from a 
limited set of EMG signals recorded during the different 
phases of a normal reach combined with gaze information to 
determine possible target locations. 

II. METHODS 

A. Data Collection 
To date, one healthy male subject has completed this 

study. Informed consent was provided prior to participation 
and the experimental protocol was approved by the 
Northwestern University Institutional Review Board. 

The subject performed unconstrained three-dimensional 
reaches to a bank of 16 LEDs that were just within reach and 
covered a large workspace on two intersecting vertical 
planes [9]. The positive x, y, and z directions corresponded 
roughly with forward, right, and down from the subject’s 
perspective. Eighteen blocks of reach trials were analyzed, 
each lasting 160s. Six of the blocks comprised reaches made 
at normal speed, six were fast reaches and six were slow 
reaches. 

Each trial began with the subject’s right arm in a neutral 
position with the hand resting in his lap, followed by the 
appearance of a target LED. The subject was instructed to 
fixate the LED, which was lit for 1s prior to an auditory “go” 
cue. Following the “go” cue, the subject was instructed to 
reach toward the LED in a natural manner consistent with 
the intended speed of the trial. Once the LED was reached, 
the subject was instructed to hold his finger in place until a 
second auditory cue was given, after which the hand was 
withdrawn and returned to the neutral resting position. 

Throughout the experiment, the subject’s wrist was fixed 
in mid-position with the index finger extended. Movements 
were tracked in three dimensions with a sampling rate of 60 
Hz by a commercial motion analysis system (Optotrak 3020, 
Northern Digital Inc., Waterloo, Canada). EMG activity was 
recorded from the ispilateral trapezius, anterior deltoid, and 
middle deltoid muscles. EMG activity was bandpass filtered 

between 10 and 1000 Hz and sampled at a rate of 2400 Hz. 
Prior to further analysis, EMG signals were averaged over 
windows of 16.7 ms to provide overall sampling equivalent 
to that of the motion tracking system. The direction of the 
subject’s gaze was recorded at a rate of 60 Hz using a head 
mounted eye tracking system (EYETRAC-6, ASL, Bedford, 
MA). 

B. Detection of Movement State Transitions 
We used linear discriminant analysis (LDA) to detect 

movement transitions based on recorded EMG data. Each 
trial was divided into two periods: (1) reach and (2) 
withdrawal. The reach period began when the subject first 
moved his hand away from the neutral position toward a 
target and ended when the subject began to withdraw his 
hand from the target. The withdrawal period included the 
time the subject began to move from the target toward the 
neutral position to the time he began to move toward a new 
target (the start of the next trial). Ground truth movement 
transitions were defined as the times when the finger speed 
increased above a threshold equal to 2% of the maximum 
speed for each block of trials. 

EMG data were rectified and then low-pass filtered at a 
frequency of 3 Hz to obtain the EMG envelope prior to use 
in the classifier. Classifier inputs included the envelope and 
time derivative of the envelope for EMG recorded from the 
anterior and middle deltoids. A refractory period of 0.5s was 
enforced following each movement state transition, during 
which the new state was fixed and transition back to the 
previous state was not allowed. 

C. Predicting Movement from EMG and Gaze 
Three models of continuously predicted limb movements 

were compared: (GKF) – a generic Kalman filter with no 
target information; (KFT) – a Kalman filter that incorporated 
known target information as a component of the state and 
updated target position based on ground truth movement 
transitions; and (mKFT) – a mixture of Kalman filters that 
incorporated target information derived from gaze tracking 
and updated target position based on movement transitions 
determined by the LDA classifier. (For more detail on 
Kalman filter implementation see [9, 12].) The observation 
model in each of these cases was built on the windowed 
EMG signals from the ipsilateral trapezius and anterior and 
middle deltoids. The KFT was intended to provide a best-
case scenario for continuous decoding using the proposed 
algorithm, while the mKFT represented a more realizable 
implementation. 

To define target positions for the mKFT, gaze points were 
first determined by projecting from the eye along the 
direction of gaze to the planes on which the surrounding 
LEDs resided. When the start of a new reach was detected, 
the gaze point at that moment and the individual gaze points 
preceding the transition by 0.5 and 1s were selected as three 
possible intended reach targets (note that these did not 
necessarily correspond with the locations of the LEDs). The 
remaining gaze points within the second preceding the 
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transition were each clustered with the potential target of 
closest proximity. The relative numbers of total gaze points 
within each of the three clusters defined priors over the 
potential targets. When the subject began to withdraw his 
hand from the target, the eye-tracking data were ignored and 
the new target was simply set to the starting neutral location.  

Each algorithm was trained with data from five blocks of 
trials of a given speed and cross-validated by testing on the 
remaining block of that same speed. This was repeated such 
that each block of trials was used once as the testing block. 
Trials with incorrect eye-tracking calibration were discarded 
for the purposes of mKFT testing. Prediction performance 
was measured using the multiple correlation coefficient, R2 
[13].  

III. RESULTS 
Both the KFT and mKFT predicted finger position during 

fast reaches with high accuracy (Fig. 1). Two types of errors 
are visible in the mKFT data presented here: during the 
withdrawal that occurred at 74s the classifier detected the 
movement transition slightly early, and during the reach that 
occurred at 78s an incorrect target was included in the 
mixture with a fairly large prior that caused the mKFT 
trajectory to deviate from that of the KFT. The mKFT was 
able to overcome both of these errors to converge ultimately 
to the correct targets. The GKF had some difficulty tracking 
position, and tended to drift over time. Its performance was 
best in the z direction, which corresponded roughly with arm 
elevation and was therefore the most directly related to 
trapezius and deltoid activity. For fast reaches the KFT 
produced R2 of 0.98 ± 0.003 (mean ± SD), the mKFT 
produced R2 of 0.98 ± 0.003, and the GKF produced R2 of 
0.52 ± 0.08. 

The KFT predicted finger position nearly as well during 
normal reaches as in the fast condition, however the mKFT 
predictions were less accurate (Fig. 2). This is largely 
because the classifier had difficulty determining movement 
transition points with the shallower rise and fall of EMGs 
during normal reaches. This resulted in frequent delays 
between actual and detected movement onset, which 
translated into delayed target updates. Over time, the mKFT 
generally converged to the appropriate target, however, not 
as accurately as did the KFT. The GKF again had difficulty 
tracking position, and tended to drift over time. For normal 
reaches the KFT produced R2 of 0.96 ± 0.01, the mKFT 
produced R2 of 0.87 ± 0.02, and the GKF produced R2 of 
0.55 ± 0.08. 

The performance of the KFT during the slow reaching 
condition was equivalent to its performance at normal speed. 
However, mKFT accuracy declined even further due to 
transition detection delays and occasional oscillation of 
detected states near the transition points. For slow reaches 
the KFT produced R2 of 0.96 ± 0.01, the mKFT produced R2 
of 0.84 ± 0.06, and the GKF produced R2 of 0.62 ± 0.06. 

To further address the question of how delayed transition 
detection could affect prediction accuracy, we systematically 

delayed the movement transitions in the KFT model (Fig. 3). 
Relative endpoint error was defined as the difference 
between the predicted and actual finger position at the 
conclusion of the reaching movement, scaled by the length 
of the reach. While prediction accuracy (R2) decreased as a 
function of transition delay, endpoint error did not. This 
demonstrated that even when predictions of new reaches 
were initiated late, they tended to converge to the correct 
location. Fast reaches resulted in the lowest endpoint error 
but their overall prediction accuracy was more sensitive to 
transition delays than that of normal and slow reaches. 

 
Fig. 1.  A series of fast reaches with predictions made by the KFT, 
mKFT, and GKF. Ground truth transitions are indicated by open circles 
and LDA-based transitions are indicated by closed red circles. 
 

 
Fig. 2.  A series of normal reaches with predictions made by the KFT, 
mKFT, and GKF. Ground truth transitions are indicated by open circles 
and LDA-based transitions are indicated by closed red circles. 
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Removing the refractory period between movement state 
transitions resulted in occasional oscillations between 
classified movement states at the transition points, however 
this did not significantly affect the mKFT predictions. 

IV. DISCUSSION 
Both the KFT and mKFT predicted finger endpoint 

position continuously during a series of reaches by updating 
target information at the start of each new movement. High 
prediction accuracy was achieved using a noisy control 
signal that contained limited degrees of freedom. Limitations 
in performance were due primarily to difficulties in 
detecting movement state transitions and/or incorrect target 
information. The effect of the first of these was reported here 
(Fig. 3), while the effect of the second is reported elsewhere 
for the single reach case [12]. 

The method of detecting state transitions presented here 
worked well for fast reaching movements characterized by 
strong and abrupt changes in EMG activity. As the intended 
reach speed decreased, however, detection accuracy also 
decreased and adversely affected performance of the mKFT. 
Fortunately, continuous predictions of slower reaches were 
less sensitive to transition delays than predictions of fast 
reaches were, such that the cost of decreased state detector 
performance was less in conditions where the state detector 
struggled. 

Note that the prediction accuracy of the KFT, which used 
ground truth movement state transitions, was not affected by 
movement speed. Therefore the actual movement decoding 
is robust to speed changes. In order to more reliably signal 
movement onset, the user could emphasize movement at the 
beginning of the reach and then continue along the trajectory 
at his or her own self-selected speed by using an extended 
version of the mKFT [9]. 

Our analysis demonstrates that target-dependent trajectory 
models can be paired with simple state detection methods to 
continuously predict a series of reaches. The state detector 
presented here performed well for the experimental task and 
would be appropriate for reaches to and from a home 
position. Other methods might be better suited for more 
general applications, including movements between remote 
targets. Such methods could require information from other 
sources, such as additional muscles, since EMG modulation 
in the deltoids would likely not be a good indicator for the 

onset of all types of reaching movements. The principles 
elicited here, however, should inform the design of such 
state detectors.  

The accuracy of single reach decoding with mKFTs 
generally increases with the quality of target information and 
with the degrees of freedom in the control signal [12]. 
Techniques similar to those presented here could be applied 
to neural recordings, which represent a very rich control 
signal containing detectible movement state transition 
information [11, 14]. This could potentially provide a highly 
accurate and intuitive method for continuously decoding 
reaching movements for severely impaired patients. 
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Fig. 3.  Overall prediction accuracy (R2) and relative endpoint error 
plotted as a function of the imposed transition delay and reach speed 
for the KFT. Lines are mean values across all blocks at the given speed 
and error bars indicate standard deviation.  
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