
  

 

Abstract—With continued research on brain machine 

interfaces (BMIs), it is now possible to control prosthetic arm 

position in space to a high degree of accuracy. However, a 

reliable decoder to infer the dexterous movements of fingers 

from brain activity during a natural grasping motion is still to 

be demonstrated. Here, we present a methodology to accurately 

predict and reconstruct natural hand kinematics from non-

invasively recorded scalp electroencephalographic (EEG) 

signals during object grasping movements. The high 

performance of our decoder is attributed to a combination of 

the correct input space (time-domain amplitude modulation of 

delta-band smoothed EEG signals) and an optimal subset of 

EEG electrodes selected using a genetic algorithm. Trajectories 

of the joint angles were reconstructed for metacarpo-

phalangeal (MCP) joints of the fingers as well as the carpo-

metacarpal (CMC) and MCP joints of the thumb. High 

decoding accuracy (Pearson’s correlation coefficient, r) 

between the predicted and observed trajectories (r = 0.760.01; 

averaged across joints) indicate that this technique may be 

suitable for use with a closed-loop real-time BMI to control 

grasping motion in prosthetics with high degrees of freedom. 

This demonstrates the first successful decoding of hand pre-

shaping kinematics from noninvasive neural signals.  

I. INTRODUCTION 

T is estimated that 541,000 of the 1.6 million amputees in 

the United States in 2005 were upper limb amputees with 

8% (41,000) classified as a major limb loss, i.e., excluding 

fingers [1]. Needless to say, the quality of life for these 

individuals may be severely reduced. With the availability of 

state-of-the-art prosthetics like the 22 degree-of-freedom 

(DoF) modular prosthetic limb fabricated by John Hopkins 

University Applied Physics Laboratories (JHUAPL) that has 

capabilities of human-like dexterity, there is a need for high-

performing decoding interfaces that can reliably predict 

finger movement intentions during ecologically valid 

situations like grasping objects.  

Brain-Machine Interface (BMI) systems for upper limb 

prosthetics have traditionally focused on predicting arm 

movement during the transport phase of reach-and-grasp 

tasks in the form of endpoint trajectories or wrist, elbow and 
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shoulder angles and velocities in monkeys and humans [2-8]. 

However, to control a functional neuromotor prosthetic, 

algorithms designed to decode the pre-shaping of the hand in 

conjunction with the transport are needed. Decoding 

dexterous finger movement during tasks like grasping and 

manipulating objects is substantially more complex because 

of the high DoFs in the human hand.   

Studies have investigated classifying finger movements 

from neural activity [9,10]. Recent studies have shown the 

possibility of decoding kinematic parameters of movement 

during individuated finger movements, and simple grasping 

motion from local motor potentials (LMPs) extracted from 

electrocorticographic (ECoG) signals in humans [11,12]. 

Research from intracortical studies in monkeys has shown 

that it is possible to decode grasp aperture and finger 

movements during natural grasping motions [13-15]. A 

high-performing decoder, capable of inferring the 

coordinated movements of individual finger joints during an 

ecological grasping situation involving real objects is, 

however, missing. 

BMIs typically use volitional modulation of the power in 

specific frequency bands by users as control signals to drive 

movement in prosthetics. Previous work suggests that low-

frequency time-domain signals in EEG and ECoG may be a 

suitable input feature space to decode arm and hand 

movement. We hypothesize that using the correct input 

space in combination with an optimal subset of EEG 

channels will lead to high correlations between predicted 

and observed trajectories of finger movements during hand 

pre-shaping to grasp everyday objects; a gap which this 

study aims to fill.  

In this study we demonstrate the design of neural decoders 

using low-pass filtered EEG signals as inputs. The subset of 

EEG electrodes leading to an optimal decoding is found 

using a genetic algorithm (GA). EEG and hand kinematics 

were simultaneously recorded from five healthy individuals 

while they reached and grasped one of five objects kept in 

front of them. Predicted trajectories were compared with 

observed trajectories for the (four) finger MCP, thumb MCP 

and thumb CMC joint angles. 

II. METHODS 

A. Experiment design and data acquisition  

Five healthy right-handed subjects participated in this 

study after giving informed consent approved by the 

Institutional Review Board at the University of Maryland- 

College Park. EEG and hand kinematics were recorded 
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simultaneously while subjects performed a grasping task. 

Subjects were seated behind a table with five objects 

(calculator, CD, espresso cup, zipper and a beer mug) 

arranged in front of them in a semicircle with an 

approximate radius of 30 cm. The initial position of the hand 

was palm down and flat on the table at the center of the 

semicircle. We chose the five objects in our study so as to 

sample the grasp space evenly based on a prior study that 

documented the distribution of static postures of grasp for 57 

imagined everyday objects [16]. On the presentation of an 

auditory 'go' cue (100 ms tone at 2 kHz) subjects were 

instructed to select, reach out and grasp any of the five 

objects. Subjects kept a steady grasp on the objects until an 

auditory 'stop' cue (200 ms tone at 1 kHz) was presented 5 s 

after the 'go' cue, on hearing which they returned their hand 

to the resting initial position. The time until the presentation 

of the 'go' cue for the next trial was Gaussian distributed 

with a mean of 7 s and standard deviation of 1 s. Five blocks 

of 12 minutes each were recorded for subjects S1,S2 and S3 

and four blocks were recorded for subjects S4 and S5. 50 

trials were recorded in each block on average. At the end of 

each block, the placement of the five objects was rotated 

clockwise so as to provide a plurality of reach directions for 

grasping the same object, ensuring that eye movements did 

not play a role in decoding.  

Whole head EEG was recorded using a 64 channel cap, 

amplified and digitized at 500 Hz with a Net Amps 300 

acquisition system (Electrical Geodesics Inc.). The 

trajectories of 23 joint angles were recorded with a wireless 

data glove (CyberGlove, Immersion Inc.) at a resolution of 

0.93° at a non-uniform sampling rate of 35-70 Hz.  

B. Preprocessing 

 All analyses were performed using custom built programs 

in MATLAB (Mathworks Inc.). The raw synchronized EEG 

and kinematics were down-sampled to 100 Hz following the 

application of a Chebychev type-II antialiasing filter at 40 

Hz. The raw kinematics were interpolated with a piecewise 

cubic hermite interpolating polynomial and up-sampled to 

100 Hz. After rejecting 18 peripheral EEG channels and 

channels with high impedances   (greater than 200 kΩ), EEG 

was re-referenced to a common average (CAR). EEG was 

 

Fig. 1.  Flowchart showing the decoder block diagram. Preprocessed EEG 

and kinematics is passed to the decoder module (dotted box), containing the 

linear decoder and the GA wrapper. The GA maximizes the correlation 
coefficient (r) between the observed and predicted kinematics. 

then high pass filtered at 0.1 Hz with a zero-phase 4th order 

Butterworth filter. Next, both EEG and kinematics were 

low-pass filtered at 1 Hz with a zero-phase 1st order 

Butterworth filter. All EEG channels were standardized by 

their respective means and standard deviations. The 

continuous EEG and kinematics were segmented into trials 

consisting of the movement period from 0.5 s before 

movement onset to 2.5 s after movement onset. Any data 

outside of the movement periods were discarded. The 

segmentation was done to provide a balanced representation 

of movement and rest periods for the purpose of training the 

decoder. Movement onsets were determined to be points at 

which the joint angle speed exceeded 5% of the maximum 

during a trial for the first time. The segmented data were 

baseline corrected using a baseline of -0.5 s to 0 s with 

respect to movement onset.  

C. Linear decoding model 

 The decoding approach is depicted in Fig. 1. EEG 

channels to be used for decoding were selected based on an 

evolutionary optimization procedure (described in the next 

section). Each of the movement variables was independently 

modeled as a linear combination of data from the selected 

sensors: 

                    

     

 

where      is the joint angle time-series being decoded at 

time  ,    are the model parameters,    are the sensor values 

for the  th sensor,   denotes the time delay (lag) between 

EEG and kinematics and   is the optimal set of EEG 

sensors. Model parameters were calculated using the 

Generalized Linear Model (GLM) framework. The model 

was validated using 10-fold cross-validation as follows: the 

data was partitioned into 10 distinct sets. Model parameters 

were calculated using the first 9 sets (training sets) and its 

performance tested on the 10th, unseen set (test set). This 

procedure was repeated with each of 10 sets used as a test 

set. The predictive power of the decoding model (decoding 

accuracy) was designated to be the median value of the 

Pearson correlation coefficient (r) between the observed and 

predicted kinematics across the 10 folds. 

D. Selection of optimal sensors 

To optimize the neural decoder, we employed a genetic 

algorithm to select the EEG channels to be used as inputs to 

the linear decoder. The genetic algorithm is a search 

heuristic that is inspired by the process of natural evolution, 

and which provides a global optimization strategy to search 

the input space in a directed manner. The first generation 

was initialized to a population of 22 'individuals' with 

randomly chosen EEG channels. The fitness of each 

individual, defined as the median decoding accuracy across 

the 10 cross validation folds, was evaluated. The 2 best 

individuals in the population were selected to survive to the 

next generation unchanged. 16 individuals in the next 

generation were created using crossovers between the 

individuals of the current generation. The remaining 4 

individuals were mutated from individuals in the current 

generation. The mutation rate was set to an average of 2 

channels in each individual. The algorithm was allowed to 

run for 500 generations. 
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III. RESULTS 

The decoding accuracy was calculated for the finger MCP, 

thumb MCP and thumb CMC joints angles by applying the 

linear decoder at specific lags. The lags were systematically 

varied from -500 to 0 ms, in steps of 100 ms, so that past 

brain activity predicted current kinematics. For a specific 

kinematic variable and lag, decoding accuracy was 

calculated for each subject and block using the optimal set of 

EEG sensors as found by the genetic algorithm. Fig. 2 shows 

an example of the dramatic improvement in decoding 

accuracy over generations during an optimization run with 

the GA. In the initial stages, the channel selection is random, 

but soon converges onto an optimal subset. It can be seen 

that the decoding accuracy increases correspondingly.  

 
Fig. 2.  Evolution of the genetic algorithm across generations (x-axis). EEG 

channels are shown along the y-axis. Selectivity of channels across 

individuals in a generation is color coded. At the onset of the optimization, 

channels are chosen randomly (low selectivity) but quickly converge onto a 

subset of channels (high selectivity channels), which gives the optimal 

decoding accuracy. The black trace shows the improvement in the decoding 
accuracy as the algorithm converges. 

 

 
Fig. 3.  Summary of decoding accuracy for joint angle and angular velocity 

prediction. The first five bar groups show the correlation coefficient r ( ± 

s.e.m) between the observed and predicted trajectories for each subject; the 
sixth group shown the mean across all subjects.  

 

Fig. 3 summarizes the decoding accuracies across 

subjects. The decoding accuracies shown represent mean 

values calculated using the optimal lag for each subject and 

block. The decoding accuracies across the entire experiment 

(all subjects, blocks, lags and kinematic variables) were 

highly significant (p<0.001, Bonferroni corrected for 

multiple comparisons across all experimental conditions). A 

kinematic parameter of functional significance is the grip 

aperture. The maximum grip aperture (MGA) has been 

shown to scale with the object size [17]. We approximated 

the grip aperture to a first order as the sum of thumb rotation 

and index MCP joint angles. The reconstructed trajectories 

for this approximation are shown in Fig. 4.  

Qualitatively, the 

average MGA, as 

defined previously, scaled with object size. Moreover, 

predicted final grip aperture compared well with the 

measured finger aperture. Interestingly, the timing of peak 

aperture occurred later for the decoded trajectories compared 

with the measurements. This is not surprising given that only 

a single optimal lag was used by the decoder for prediction, 

and that our working definition of MGA was not based on 

the distance between the endpoints of the index and thumb, 

but rather on proxies based on the angular position of those 

figures at the most proximal joint. 

IV. DISCUSSION  

 This study demonstrates the feasibility of inferring the 

kinematics of natural reach-to-grasp movements, with a 

suitable choice of the input feature space and optimization 

over EEG channel subsets with high accuracy. Previous 

studies have investigated decoding the stereotypical opening 

and closing motion of the hand, or movements of 

individuated fingers, tasks that arguably are not used in day-

to-day life [11,12].  The task in this study involved making a 

decision to select an object, planning the goal of the 

movement, programming the movement, and executing the 

grasp in conjunction with specification of the appropriate 

hand transport trajectory. Previous studies have shown the 

involvement of multiple cortical areas in such tasks 

[2,18,19]. The use of EEG affords a global view of the brain 

activity at the macroscopic level and is thus well suited for 

this task. A summary of earlier results pertaining to 

decoding finger kinematics from neural activity is provided 

in Table 1, along with our results for comparison.  

We are cognizant that EEG is susceptible to various 

artifacts, the most prominent being eye movement, blinking 

and muscle artifacts [20]. Notably, our preprocessing 

methods did not use any artifact rejection techniques. In this 

regard, our results are robust against artifacts, as the 

prediction accuracies were high despite the data used for 

training and testing the model containing artifacts. While eye 

movements may correlate with the hand position, it is 

unlikely that they correlate with finger joint angle 

Fig. 4.  Average decoded 

grasp aperture trajectories for 
subject S1. Observed (black) 

and reconstructed (red) 

trajectories are shown for the 
grasp aperture, approximated 

as the sum of thumb rotation 

and index finger MCP. 
Trajectories for each of the 

five objects (from top to 

bottom: calculator, CD, 
espresso cup, beer mug, 

zipper) are shown. The width 

of each trajectory band 
represents the 90% 

confidence interval obtained 

by fitting the data with a 
Gaussian at each time 

instant.      
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trajectories. Nonetheless, to conclusively discount eye 

movement as a predictor of grasp trajectories, we changed 

the placement of objects after each block. This ensured that 

the direction and view of hand transport for an object was 

different in each block while the grasp trajectory (but not its 

gaze-centered view) remained the same. Muscle activity 

artifacts in the EEG are unlikely to affect our results, since 

the data was low-pass filtered at 1 Hz prior to decoding, and 

muscle artifacts are known to contaminate higher 

frequencies in the theta band and beyond [21]. 

 
TABLE I 

Summary of decoding accuracy studies 

Hand motion Decoded 

kinematics 

Decoding 

accuracy 

Notes Refer-

ence 

Opening and 

closing hand 

Principal 

component  

r = 0.51  Human ECoG [12] 

Finger tapping  MCP joint 

angles 

r = 0.52 Human ECoG [11] 

Object grasping Grasp 
aperture 

r = 0.62 Monkey LFP [14] 

Object grasping Finger joint 

angles 

r = 0.74 Monkey multi 

unit activity 

[13] 

Object 

grasping 

MCP joint 

angles 

r = 0.76 Human EEG * 

* Current study 

 

 While this study successfully used a low-frequency time-

domain feature space, there may exist other feature spaces 

that can contribute to natural movement decoding [22]. 

Studies have also shown the improvement in decoding 

accuracies by using multiple lags as inputs to decode 

movement [3]. The successful use of the genetic algorithm 

in this study to select relevant EEG channels at a specified 

lag may be extended to find an optimal feature set from a 

wide list of features like time-frequency information and 

simultaneous multiple lags that could maximize decoding of 

dexterous movements of varying speeds and complexities. 

In summary, we propose a new approach to designing 

EEG-based decoders that can accurately reconstructed finger 

and thumb joint angles during a reach-to grasp task. To our 

knowledge, there have been no previous attempts to decode 

continuous dexterous finger movements from EEG during an 

ecological grasping task. We believe that the critical factors 

which result in the successful decoding in this study was use 

of a suitable input feature space coupled with an optimal 

subset of EEG channels.  
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