
  

  

Abstract—This paper aims to design a wearable terrain 
recognition system, which might assist the control of powered 
artificial prosthetic legs. A laser distance sensor and inertial 
measurement unit (IMU) sensors were mounted on human 
body. These sensors were used to identify the movement state of 
the user, reconstruct the geometry of the terrain in front of the 
user while walking, and recognize the type of terrain before the 
user stepped on it. Different sensor configurations were 
investigated and compared. The designed system was evaluated 
on one healthy human subject when walking on an obstacle 
course in the laboratory environment. The results showed that 
the reconstructed terrain height demonstrated clearer pattern 
difference among studied terrains when the laser was placed on 
the waist than that when the laser was mounted on the shank. 
The designed system with the laser on the waist accurately 
recognized 157 out of 160 tested terrain transitions, 300ms-
2870ms before the user switched the negotiated terrains. These 
promising results demonstrated the potential application of the 
designed terrain recognition system to further improve the 
control of powered artificial legs. 

I. INTRODUCTION 
OWER extremity amputation is a major impairment that 
affects the basic activities of the leg amputee’s daily 

life. Recent developments in microprocessor-controlled, 
powered artificial legs have enabled the design of multi-
functional prosthetic legs possible [1-3]. With the powered 
device, the patients with leg amputations are able to easily 
perform the activities that are difficult or even impossible 
when wearing the passive devices. The control of the 
powered artificial legs is mode-based [2-3] because the 
control strategies depend on the user’s locomotion mode 
such as level walking and stair ascent/descent. To allow the 
prosthetic leg to switch among different modes, users have 
to “tell” the prosthesis the movement intent and the type of 
negotiating terrains. 
    Various approaches have been developed to interpret the 
user’s intent. A recent study uses the mechanical 
measurements from the powered prosthetic legs to identify 
user intent [4]. Our previous study [5] employed surface 
electromyographic (EMG) signals to identify the user’s 
locomotion modes. About 90% accuracy was reported for 
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recognizing seven locomotion modes. Besides, the accuracy 
for user intent recognition was further improved by fusing  
EMG signals measured from the residual thigh muscles and 
the ground reaction forces/moments collected from the 
prosthetic pylon [6].  

Although the previous studies have showed promising 
results, further improvement in accuracy and time response 
for user intent recognition is warranted to ensure safe and 
robust prosthesis operation. Previous study on human vision 
in locomotion [7] has reported that the pre-acquisition of 
environmental information and self-motion could guide the 
movements of the lower limbs to adapt to the walking 
terrains. Inspired by this biological mechanism, the 
information of the walking terrain in front of the prosthesis 
user and the user’s movement status might provide a prior 
knowledge to the intelligent intent recognition system to 
further enhance the system accuracy and response time. 
Many techniques have been used to detect/recognize the 
external terrains, such as stereo camera [8], infra red 
rangefinder [9], and 3D laser scanner [10]. Applications of 
these techniques for prosthetic leg are, however, challenging 
because (1) the equipment is too heavy for wearable and 
portable design, or (2) the real-time 3D image processing is 
computational complex for terrain recognition.  

In order to make the application of terrain recognition on 
powered artificial legs possible and practical, a terrain 
recognition system based on a portable laser distance sensor 
and wearable inertial measurement unit (IMU) sensors was 
designed. Two tasks were conducted in this study. (1) We 
compared the two sensor configurations for walking terrain 
reconstruction. (2) The sensor configuration that provided 
clearer geometry pattern for terrain recognition was selected 
to design a terrain recognition system. The system was 
preliminarily evaluated on one healthy human subject. The 
results of this study may aid to improve the control of 
powered prosthetic legs and also hope to benefit the 
optimization of the passive or semi-active prostheses. 

II. METHODS AND RESULTS FOR TASK 1 

A. Sensor Configurations 
This study was conducted under Institutional Review 

Board (IRB) approval and consent of the tested subject. One 
male, healthy subject was recruited. 
    Two sensor configurations were investigated in this study 
as shown in Fig. 1. For the first configuration, a portable 
optical laser distance sensors (Leuze Electronic, US) was 
instrumented on the right waist. The laser distance sensor 
can measure a distance ranging from 300-10000 mm, with a 
high degree of independence from the terrain’s reflectivity 
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properties. The resolution of the signal was 1-3mm. Four 
inertial measurement units (IMU) (Xsens Technologies 
B.V., Enschede, The Netherlands) were used to measure the 
position and orientation of the distance sensor and the 
subject (Fig. 1A). One of the IMU sensors was placed on the 
laser sensor with one axis aligned with the direction of the 
laser beam; the rest three were put on the lateral side of the 
right thigh, the lateral side of the right shank, and the top of 
the right foot, respectively. For the second configuration 
(Fig. 1B), the laser sensor was placed on the lateral side of 
the right shank. Only two IMU sensors were used: one fixed 
on the laser sensor to track the orientation of the laser beam, 
and the other placed on the top of the right foot to measure 
the user’s movement state.  

B. Experimental Protocol 
The distance senor and IMU sensors were secured to the 

human subject with a flexible strap. During the sensor 
calibration, the subject was instructed to stand still. The 
angle α between the laser beam and vertical direction was 
fixed at 45 degree for both configurations (Fig. 1).  This 
angle varied when the subject started to move. The laser 
signal and the signals recorded from IMUs were sampled at 
100 Hz. Experiments were videotaped. All the data 
recordings in this study were synchronized. 

Six types of commonly encountered terrains were 
investigated in this study; they were level ground, up stair, 
down stair, up ramp, down ramp, and obstacle. An obstacle 
course was built in the laboratory, consisting of a level-
ground walk way, 5-step stairs, 10-feet ramp, and obstacle 
block and flat platforms. During the experiment, the subject 
was instructed to walk at a comfortable speed with a 
predefined route. The subject started each trial from level-
ground walking, transited to stair ascent, walked on a 
platform with a 90 degrees turn, descended a ramp, walked 
on another platform, descended a one-step stair, walked on 
the level-ground, stepped over an obstacle, and continued 
level-ground walking. Then, we asked the subject to stop 
and walk on the same path with a reversed direction. The 
trial was ended after the subject returned to the starting 
location. Totally 20 trials were conducted for each sensor 
configuration. Rest periods were allowed between trials.  

C. Terrain Reconstruction Algorithm 
     The geometry of the terrain in front of the subject was 
reconstructed in the sagittal plane. Two geometrical 
parameters were used: the height of the terrain (h) and the 

horizontal distance from the subject to the terrain (l) as 
shown in Fig. 1. These two parameters at the moment t were 
calculated by 

                      )(sin)()()( ttdtHth β−=                     (1) 

                       )(cos)()( ttdtl β=                                (2) 
where )(tH denotes the vertical distance from the laser 
sensor to the ground, which can be obtained from the 
measurements of the IMU sensors. )(td denotes the distance 
measured from the laser sensor. )(tβ represents the tilt 
angle of the laser sensor in the sagittal plane, which can be 
obtained from the IMU sensor attached on the laser sensor.  

D. Results and Discussion for Task 1 
     Two sensor configurations as shown in Fig. 1 were 
investigated and compared in this study. The terrain height, 
as the primary feature for designing the terrain recognition 
system, was used to evaluate two sensor configurations. The 
calculated terrain heights (h) in one representative trial 
derived from two sensor configurations were shown in Fig. 
2A and 2B, respectively. The reconstructed terrain height 
demonstrated clearly distinguishable pattern among studied 
types of terrains when placing the laser sensor on the waist 
of the subject (Fig. 2A). When fixing the laser sensor on the 
subject’s shank, however, the reconstructed terrain height 
was quite noisy and did not present obvious differences in 
pattern among tested terrains (Fig. 2B). The signal spikes 
presented in Fig. 2B were produced by the large motion of 
the shank during swing of each gait cycle. Therefore, the 
first sensor configuration with the laser sensor on the waist 
was employed in this study to recognize the terrains.  
     In addition, some noises were observed in both sensor 
configurations as indicated by the red circle shown in Fig. 2. 
These noises were caused by the objects in the ambient 
environment (e.g. the laser beam hit the railing of the 
staircase). Since these noises may affect the performance of 
the terrain recognition system, the interference from other 
objects in the environment must be separated from the 
studied terrains during the system design as discussed in the 
following sections. 

A.                                                  B.          

 
Fig. 1.  Schematic diagram of two sensor configurations for terrain 

t ti  

 
Fig. 2.  The calculated terrain height (h(t)) in one representative trial 
with (A) laser sensor on the waist, and (B) laser sensor on the shank. 
The white area means the subject was walking on the level-ground; 
the gray area represents the subject was negotiating uneven terrains. 
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III. METHODS AND RESULTS FOR TASK 2 

A. Architecture of Terrain Recognition System 
     The block diagram of the designed terrain recognition 
system is demonstrated in Fig. 3. This system consists of 
three parts: terrain reconstruction module, stand still/turn 
detection module, and terrain recognition module. The 
distance signals measured from the laser sensor and the 
measurements collected from the IMU sensors were 
simultaneously fed into the terrain reconstruction module. 
Based on these inputs, the terrain reconstruction module can 
calculate the parameters that represent the geometrical 
characteristics of the terrain in front of the subject. These 
parameters were then sent into the terrain recognition 
module to identify the front terrain type. In addition, the 
measurements from the IMU sensors were also streamed 
into the designed stand still/turn detection module, which 
was used to detect the subject’s movement status. If no 
movement or turning is detected, the terrain recognition 
module is disabled; otherwise, this module outputs the final 
prediction of the terrain types. 

B. Terrain Recognition Algorithm 
A terrain recognition algorithm was designed based on 

decision tree. The decision tree, one of most used 
classification approaches, has been used in many fields such 
as data mining, machine learning, and pattern recognition 
[11]. The structure of the terrain recognition algorithm is 
demonstrated in Fig. 4.  

Besides the height of the terrain (h) and horizontal 
distance from the subject to the terrain (l) estimated by 
equations (1) and (2), another two features were used for the 
terrain recognition: the slope of the terrain (s) and the rate of 
terrain height change (j). They were calculated by 

                       )(/)()( tlthts =                                      (3) 

                      )1()()( −−= ththtj                               (4) 
where t means the current time and t-1 represents the 
previous sample time. The included classes included level 

ground, up stair, down stair, up ramp, down ramp, obstacle, 
and others. The class of “others” includes the objects other 
than studied terrains in the laboratory (e.g. tables, walls, 
etc.), which cause noises in laser reading and reconstructed 
terrain geometry as shown in Part II. D. In the first node of 
the decision tree, the terrain height (h) was used as the key 
feature to classify the terrains that are above current 
negotiated terrains (upper terrain), terrains that are below the 
current terrain (lower terrain), terrain with the same height 
as the current terrain (level terrain), or others. In the second 
level of the decision tree, the lower terrain was further 
separated into down ramp, down stair, and others based on 
the rate of terrain height change feature (j(t)). The upper 
terrain was classified as up ramp and up stair/obstacle, 
according to the terrain slope. In the third level, up stair and 
obstacle were recognized by comparing the distance (l(t)) to 
the defined threshold. The classification thresholds were 
obtained based on the collected training data as well as the 
known dimension of staircases and obstacles and incline 
angles. 

The terrain recognition accuracy was affected by the 
user’s movement status. Therefore, a standstill/turn detection 
module was designed to enable/disable the terrain 
recognition module. No movement was detected based on 
the current velocity of the subject, measured by IMUs. The 
turning detection was achieved by monitoring the angle 
displacement in horizontal plane. The detection thresholds 
were selected based on the collected training data.  

C. System Performance Evaluation 
The ultimate goal of this study is to apply the terrain 

recognition to artificial legs, which allows prosthesis users to 
smoothly transit among different walking modes. Hence, the 
designed terrain recognition system is required to identify 
the terrain type before the user step on it. In order to evaluate 
the time response of designed terrain recognition system, 
prediction time was defined as the elapsed time from the 
moment when the change of terrain in front of the user is 
correctly recognized to a critical timing when the user is 
actually switch the locomotion mode. For all the transitions 
from level ground to other terrains, the critical timing was 
defined as the moment that the subject started to lift the foot 
from level ground to another terrain; for all the transitions 
from other terrains to level ground, the critical timing was 
defined as the time that the subject started to place the foot 
from one terrain to level ground. 

In addition, the number of missed terrain transitions was 
used to evaluate the system performance. If the targeted 
terrain cannot be correctly recognized before the defined 
critical timing, a missed terrain was counted. Ten trials data 
were used as the training data to build the terrain recognition 
system and find the thresholds. The rest ten trials data were 
used to evaluate the system performance. 

D. Results for Task 2 
There were 160 terrain transitions in the testing dataset. 

Three terrain transitions were misclassified as the transitions 
from level ground to up stair, when the subject actually 

 
       Fig. 3.  Block diagram of the terrain recognition system. 
 

 
            Fig. 4. Structure of the terrain recognition algorithm. 
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walked from the level ground to the up ramp. The rest 157 
terrain transitions were correctly recognized before the 
defined critical timing. The overall recognition accuracy was 
98.12%. The terrain prediction time was shown in Table I. 

The terrain recognition results in one representative 
testing trial were demonstrated in Fig. 5. The vertical 
boundaries of the blue area in this figure indicated the 
critical timing for each type of terrain transition. All the 16 
terrain transitions were correctly identified before the critical 
timing. Two errors (I and II), as shown in Fig. 5, were 
observed when the subject switched from level ground to the 
obstacle. However, the terrain recognition decisions 
switched back to obstacle before the critical timing, which 
were, therefore, not considered as the missed terrain. 

E. Discussion for Task 2 
A terrain recognition system was designed and 

preliminarily tested on one healthy human subject. The 
results showed the promise of the designed system for 
accurate recognition of the terrains in front of the walking 
person. The output of the terrain recognition system may be 
used to provide the control system in the artificial legs with 
prior knowledge of walking environment. Therefore, the 
intelligent controller can modify the control strategy of 
prosthetic legs based on the known environment and allow 
the prosthesis user to switch walking terrains seamlessly. It 
is noteworthy that although the transition prediction time 
(e.g., 2.34±0.13s for LG-US) may be beyond the duration of 
one normal gait cycle, it will not cause the inappropriate 
reaction of the prosthesis (e.g., trigger the prosthetic leg to 
response too early), since the outputs from terrain 
recognition system only provide the prior knowledge while 
the mode switch of the prosthetic legs also depends on other 
control signals. 

The presented study was preliminary, future investigations 
are needed. First, the system was only evaluated in the 
laboratory environment with a known terrain setup, which 
means both the training and testing data were collected in 
the same conditions. The performance of the system should 
be further quantified when the subject walks in unknown or 

unpredictable environment. Second, only limited walking 
status and constant walking speed were investigated in 
present study. More user status (such as sitting on a chair) 
and different walking speed should be considered in the 
future system design.  In addition, further design is 
demanded for integration of terrain recognition system with 
artificial leg control system to achieve smooth locomotion 
mode transitions.  

IV. CONCLUSION 
In this study, a wearable terrain recognition system was 

designed, which may be used to assist the control of the 
powered artificial prosthetic legs. The preliminary testing 
results showed that the designed system can accurately 
recognize the terrain in front of the subject with a prediction 
time 300ms-2870ms. These results demonstrated the 
potential application of the designed terrain recognition 
system to further improve the control of powered artificial 
legs.  
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Fig.5. Terrain recognition results in one representative testing trial. 

TABLE I 
TERRAIN PREDICTION TIME 

 
Note: level ground (LG), up stair (US), down stair (DS), up ramp (UR), 
down ramp (DR), obstacle (OB). 

5455


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

