
  

  

Abstract— Tongue Drive System (TDS) is a new assistive 

technology that enables individuals with severe disabilities such 

as those with spinal cord injury (SCI) to regain environmental 

control using their tongue motion. We have developed a new 

sensor signal processing (SSP) algorithm which uses four 3-

axial magneto-resistive sensor outputs to accurately detect and 

classify between seven different user-control commands in 

stationary as well as mobile conditions. The new algorithm 

employs a two-stage classification method with a combination 

of 9 classifiers to discriminate between 4 commands on the left 

or right side of the oral cavity (one neutral command shared on 

both sides). Evaluation of the new SSP algorithm on five able-

bodied subjects resulted in true positive rates in the range of 

70-99% with corresponding false positive rates in the range of 

5-7%, showing a notable improvement in the resulted true-false 

(TF) differences when compared to the previous algorithm. 

I. INTRODUCTION 

MONG currently available assistive technologies (ATs), 

there are only a few that are widely accepted and used 

by individuals with severe disabilities in everyday living [1]. 

The main challenges here are for a device to be highly 

reliable, both in terms of safety and accurate operation, 

practical for individuals with various disabilities, and offer 

sufficient degrees of freedom to the end users. Powered 

wheelchairs, for example, are the only and the most reliable 

AT aimed for mobility. However, they require hand motion 

for joystick control unless they are equipped with alternative 

controls. Voice recognition systems are another example that 

cannot be used by SCI patients whose speech function may 

also be impaired. Sip-n-Puff switches, which operate by 

blowing or sucking through a straw, on the other hand, are 

very reliable in a variety of environments, and widely used 

for wheelchair control. However, they can only provide a 

limited number of commands (four). Brain Computer 

Interfaces (BCIs), have the potential to become the ideal AT 

by offering means to communicate with brain activities. 

However, the research on BCI has not yet yielded to a 

reliable AT that can be made available to the public [2]-[4]. 

Alternatively, human tongue is an attractive option for the 

control site in an AT. It escapes damage even in severe 
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spinal cord injuries or most neurological diseases. It is 

inherently capable of sophisticated motor control tasks and 

does not fatigue easily. The tongue is easily accessible inside 

the oral cavity which remains hidden from the sight 

therefore providing users with privacy [5]. By utilizing the 

tongue capabilities, we have developed an unobtrusive, 

minimally invasive AT, called Tongue Drive System (TDS), 

which can provide a high level of control to the user by 

offering 7 simultaneously available commands and has the 

potential to offer even more degrees of freedom [6].  

The external TDS (eTDS) consists of a small permanent 

magnetic tracer, attached to the user’s tongue by adhesives 

or piercing, and an array of magnetic sensors mounted on a 

wireless headset worn by the user. Magnetic field variations 

resulted from tongue movements are captured by the 

magnetic sensor array and wirelessly transmitted to a PC or 

a Smartphone (iPhone) [7]. A Sensor Signal Processing 

(SSP) algorithm running on the computer or Smartphone 

then takes charge of continuous detection and classification 

of the user intended commands in real-time and provides the 

output. The extracted commands can then be used for 

computer access or to control any device that can be 

controlled by a computer.  

Since the central processing core of the TDS is its SSP 

algorithm, the overall characteristics of the system such as 

accuracy, response time, and sensitivity heavily depend on 

this algorithm. Some of the common pitfalls of signal 

processing algorithms devised for ATs include: the “Midas 

touch” problem i.e. the issuance of unintended commands 

[8], [9], sub-optimum computational cost which results in 

lower speed as well as excessive computational power, and 

insufficient sensitivity in detecting user control commands. 

In previous TDS systems, we were using a single-stage 

classification algorithm with K-Nearest Neighbor (KNN) 

classifier applied on PCA components extracted from a pair 

of magnetic sensors. Even though the resulting performance 

was acceptable, the system occasionally suffered from 

misclassification among 7 commands especially when the 

subjects were using magnetic tongue studs, as opposed to 

glued-on magnetic tracers. The main objective of this work, 

however, has been to provide TDS with a more 

computationally efficient SSP algorithm to detect and 

classify up to 7 different control states as accurately and 

promptly as possible and in real-time. We have employed 

two additional magnetic sensors to achieve a better coverage 

over the oral cavity resulting in better resolution, 
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classification accuracy, and noise cancellation efficacy [10]. 

II. EXPERIMENTAL PARADIGM  

A. Graphical User Interface 

The Graphical User Interface (GUI) used in this 

experiment consists of two parts: the Training session and 

the Testing session. During the training session, the subject 

was asked to issue randomly selected commands when their 

corresponding lights turn on (Fig. 1). Here, after each light 

turned on, there was a 2 s interval when the subject was 

allowed to move his/her tongue to the ordered command 

position followed by a 1.5 s period when the subject was 

asked to fix the tongue in that position while the program 

collects the sensor outputs for that command. In order to 

provide the operator with a visual feedback of the quality of 

the data being recorded concerning the inter cluster 

separability and intra class consistency; we used the 

differentiated sensor output to display the average of each 

trial as one data point in a 3-D space, as shown in Fig. 1.  

For online experiment, we implemented our new SSP 

algorithm in C programming language and compiled it into 

two dynamic-link libraries (DLLs) of Train and Test 

functions. These functions were then employed in the 

LabVIEW GUI. After the training data was recorded by 

repeating each command for 10 times, it was then fed to the 

Train module. The Train module includes the training phase 

of the SSP algorithm to train the classifiers, and calculates 

the parameters needed for online classification of the 

commands in the testing phase.  

For testing session we have used the GUI, originally 

designed for TDS Information Transfer Rate measurement, 

to evaluate our new algorithm and measure the resulted 

improvement in TDS functionality. In the testing session, 

shown in Fig. 2, one out of 6 commands was randomly 

selected and its light turned red during when the subject got 

ready to issue the depicted command. The subject was asked 

to make the necessary tongue movement once the center 

light turned green and message “Go” appeared on the screen. 

A hit was captured when the algorithm detecting the tongue 

motion moved the center light toward that command and 

changed its color to green. The subject was instructed to 

keep his/her tongue in that position until both lights turn off 

and then return the tongue back to the Resting position 

where the algorithm would recognize it as a Neutral 

command. In order to challenge both the system (algorithm) 

and the subject, we applied three different time intervals 

during which the subject had to reach the command position 

or otherwise a miss hit would be recognized. 

 The task of recognizing the issued command is due to the 

testing phase of the SSP algorithm which was implemented 

as the “Test function” inside another DLL module. The 

LabVIEW GUI automatically feeds the output parameters of 

the “Train function” along with the raw data to the input of 

the Test module and shows the outputted command on the 

screen (Fig. 2). 

B. Dataset 

In order to measure the performance of our algorithm we 

collected the raw sensor outputs along with all the necessary 

timing information and performed an offline analysis on the 

data recorded from five able-bodied subjects. Four of these 

subjects have had tongue piercings and did not have any 

prior experience with TDS. The tongue studs of these 

subjects were replaced by magnetic tongue studs, especially 

manufactured for this purpose, which had a small magnet 

encased in their upper titanium welded ball. The last subject 

was however totally familiar with TDS and had the magnetic 

tracer temporarily attached to her tongue with tissue 

adhesive. To simulate the dynamic situation, this subject 

performed the experiment while moving around carrying a 

notebook computer which was running the software. All the 

other subjects did the experiment while sitting in front of a 

desktop computer. The training data consists of 12-

dimensional raw sensor outputs i.e. the data recorded from 4 

three-axial magnetic sensors sampled at 50 Hz frequency in 

addition to time and tag information which refers to 

transition and fixing periods. This data includes 70 trials i.e. 

10 repetitions of 7 commands. The testing data was collected 

during 3 different time intervals of 1s, 0.7s, and 0.5s each 

consisting of 4 rounds of experiment. Each round includes 

issuing 24 random commands i.e. each command randomly 

occurs 4 times. We also repeated the experiment in 5 

different sessions. 

Fig. 2. TDS-GUI for 7 commands testing session with different time 

intervals. 
Fig. 1. TDS-GUI for 7 command training session in the LabVIEW 

environment. 
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III. DATA PROCESSING 

A. Preprocessing 

External magnetic interference (EMI) including Earth 

magnetic field (EMF) can potentially affect the magnetic 

sensor readings and reduce the signal-to-noise ratio (SNR). 

In order to cancel EMI effect on four sensor readings, we 

apply a differential noise cancellation method. In the current 

TDS prototype we have four 3-axial magnetic sensors 

mounted on two PCBs which are implemented on two poles 

extending from both sides of the TDS headset. Noise 

cancellation is performed separately on each pair of front-

side, back-side, two sensors in the right, and two in the left-

side of the TDS headset (Fig. 3). Here, we mathematically 

align two sensors in each pair and only consider their 

difference for future calculations. Advantageous of this 

process is that it also reduces the dimensionality of raw data 

from 12 to 6. For a complete mathematical description on 

this process please refer to [10].   

B. Classification 

In signal processing field, it is customary to combine 

several stages of classification when number of classes 

increase or differet types of patterns are to be recognized 

[11],[12]. We have employed a two-stage classification 

algorithm which with near absolute accuracy can distinguish 

between 7 different control commands of Left, Right, Up, 

Down, Left-Select, Right-Select, and Resting (Neutral) 

inside the oral cavity (Fig. 4). In the first phase we mainly 

focus on performing a hundred percent accurate 

discrimination between left (left, up, left-select) versus right-

side (right, down, right-select) commands. Here, the noise 

cancellation is performed on left and right-side sensors 

separately to provide a 6 dimensional vector including 3 

components from the left and 3 from the right-side sensors. 

The reason for this selection is that, alternatively, the 

difference between front and back-side sensors masks the 

discriminatory information between left vs. right-side 

commands since they will both produce two differential 

vectors with similar magnitudes. Then, we calculate the 

Euclidean distance of an upcoming point to the left and right 

command-positions which are averaged from training trials. 

These distances are normalized to compensate for any 

asymmetry in user’s left vs. right-side commands and then 

compared to produce a left/right decision. Based on the 

outcome of the first stage, the second stage of classification 

is applied on either left or right side of the oral cavity to 

detect and discriminate between left, up, left-select, and 

neutral commands on the left side; or right, down, right-

select, and neutral commands on the right side. Note that 

neutral command can be interpreted as belonging to either 

left or right side and therefore classified to either side in the 

first stage since it is going to be re-classified in the second 

stage and against different commands in the left or right-side 

as well.  

Second stage of classification begins with de-noising the 

raw data using the front and back-side sensors. This provides 

another 6 dimensional vector including 3 components on the 

back and 3 on the front side of the oral cavity. Successively, 

this vector is fed to a group of 9 linear and nonlinear 

classifiers consisting of Linear, Diagonal linear, Quadratic, 

Diagonal Quadratic, Mahalanobis minimum distance, and 

four KNN classifiers. Four different distances used in KNN 

classifiers include Euclidean, Cosine, Correlation, and City 

Block among which the last three are defined as follows: 
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 where
1X is the upcoming test data, 

2X is the training data 

recorded for every class, and 
1X &

2X  are their mean values 

respectively. We calculate the distance of each upcoming 

sample from the training samples in each class; however, we 

down-sample the training data by a factor of 10 in order to 

retain computational efficiency and speed for our online 

application. At the end, the outputs of all classifiers are 

combined following a Majority Voting schema to provide a 

Fig. 3. eTDS-Headset prototype; the figure shows the alignment of four 

magneto-resistive sensors which was used in EMI cancellation. 

Fig. 4. Flowchart of the 2-stage classification algorithm. 
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final result.  

IV. RESULTS 

A. Offline Experiment 

In our offline analysis, we evaluated the algorithm 

performance throughout the whole time when the test 

session was running. It included both the transition phase i.e. 

when the tongue was moving, as well as when the tongue 

was in a command position. Therefore, 4 different measures 

of true positive rate (TPR) and false positive rate (FPR) can 

be provided. These measures were calculated in a sample-

by-sample analysis and captured as follows: 

FNTP
TPTPR

+
=

               (2) 
 

TNFP
FPFPR

+
=  

where TP (true positive) and FN (false negative) are a true 

detection and a misclassified sample during the issuance of a 

command, respectively; FP (false positive) is a false detected 

command during the transition phase as well as during a 

neutral command; TN (true negative) is a sample during the 

transition or neutral command that has correctly been 

classified as neutral. Note that in our analysis these 

definitions differ from the common ones used in binary 

detection model since we are measuring the accurate 

detection of 7 commands all at the same time.  

To measure the improvement achieved, the results of the 

new algorithm were compared with the previous algorithm 

[10] where all 7 commands were classified in one stage 

using a KNN classifier. Table 1 reveals the TPR (left side 

columns) and FPR (right side column) percentages for the 

last four rounds of all subjects. For each subject, only the 

results regarding the best session are shown.  
 

TABLE I 

TP (LEFT SIDE COLUMNS) AND FP (RIGHT SIDE COLUMNS) RATES 

CORRESPONDING TO THE BEST SESSION DURING THE LAST 4 ROUNDS WITH 

0.5S TIME INTERVAL. BOLD NUMBERS REFER TO THE RESULTS OF THE NEW 

ALGORITHM AND THE OTHERS TO THE PREVIOUS ALGORITHM. 

 Round 9 Round 10 Round 11 Round 12 

Subject 1 
88 5 87 5 97 4 96 3 

78 10 79 8 81 9 81 9 

Subject 2 
94 7 94 8 96 5 96 4 

80 15 82 14 80 10 81 10 

Subject 3 
80 11 85 5 85 6 96 5 

67 11 74 7 74 8 80 9 

Subject 4 
70 5 76 10 88 4 85 3 

60 10 70 10 70 9 81 9 

Subject 5 
99 7 99 5 98 7 98 7 

90 10 90 8 95 9 92 9 

 

B. Online Experiment 

One major issue we were previously facing was the 

issuance of some unintended commands during the phase 

when the tongue was in the transition between different 

commands. This problem named as “Junk Commands” was 

better experienced with manually moving the magnet in the 

3-D space inside the headset. We could find different 

positions at which rotating the magnet could result in a 

misclassification where a command of the opposite side was 

being detected. The reason is that orientation of the magnet 

can potentially change the magnetic flow measured by the 

magnetic sensors and therefore affect the classifier output. 

Nevertheless, by relying on the magnitude of the sensor 

readings during the first stage of classification, we could 

successfully discriminate left vs. right-side commands with 

near absolute accuracy. As a result, by implementing the 

new algorithm, we covered the entire 3-D space inside the 

headset and recognize 7 command positions with almost no 

mistake.  

V. CONCLUSION 

In this work we implemented our new SSP algorithm in 

TDS software and verified the potential improvement gained 

in the accuracy and sensitivity of the system in detecting 

user-intended control commands. Offline experiments with 5 

able-bodied subjects showed that with as high as 99% of true 

detections and as low as 5% of false positives TDS can now 

offer 7 different regions inside the oral cavity that can be 

reliably used as user control commands. Based on promising 

results, this shows a potential for increasing the number of 

commands to more than 10. We also are in the process of 

assessing the new system by people with severe disabilities 

and plan to add the proportional control capability to TDS.  
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