
  

  

Abstract—Complex systems science has led to valuable 

insights regarding the care and understanding of critical illness, 

but has not led to fundamental improvements to care to date. 

Realizing the fact that there is inherent uncertainty in patient 

trajectory, we have developed Continuous Individual 

Multiorgan Variability Analysis (CIMVA) as a tool 

theoretically and practically designed to track the systemic 

emergent properties of the host response to injury or infection. 

We present an overview of CIMVA software, and discuss four 

separate potential clinical applications that we are evaluating; 

including early detection of infection, better prediction of 

extubation failure, continuous monitoring of severity of illness 

in the ICU, and the evaluation of cardiopulmonary fitness. 

Future challenges are discussed in conclusion. 

I. INTRODUCTION 

HE science of complex systems has been a formal 

subject of study for  over five decades [1], yet with roots 

that date at least a century ago when Poincaré uncovered the 

irreducible uncertainty associated with the three body 

problem. Numerous individuals have built pillars of this 

large yet still incomplete theoretical framework, including 

Shannon [2], von Bertalanffy [3], Kauffman [4], Mandelbrot 

[5], Bak [6], Capra [7], Glass [8], Prigogine [9], Goldberger 

[10], and many more. Despite a rich theoretical framework, 

the clinical impact of complexity science currently in use to 

directly improve patient care is inconsequential in 

comparison to the enormous impact of analytical science 

(basic science) and population science (epidemiology). The 

overall aim of this research program is to contribute to 

addressing this deficit, aiming to deliver complexity science 

at the bedside for the direct benefit of the individual patient.  

A fundamental problem facing clinicians caring for 

patients at risk for or with existing critical illness is the 

inherent uncertainties and inefficiencies associated with their 

care. For clinicians caring for patients admitted to an 

emergency room (ER), hospital ward or intensive care unit 

(ICU), there is a great deal of uncertainty regarding if a 

patient will subsequently deteriorate requiring life support, 

in particular during the early stages following significant 

injury, operation or infection. Often, the recognition of 

patient deterioration is made late, well after illness and organ 

dysfunction have progressed. Clinicians then face 
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uncertainty regarding timing of removal of mechanical 

ventilation life support (i.e. extubation) so as not to cause 

harm to their patients if they should fail requiring emergency 

re-institution of ventilation (i.e. re-intubation). All of this 

uncertainty leads to significant inefficiency, with patients 

admitted unnecessarily to the ICU, kept on life support or in 

the ICU longer than necessary. Complexity science teaches 

us that this uncertainty has an irreducible component (i.e. 

infinite knowledge of the present still cannot predict the 

future); thus, embracing the reality of uncertainty as well as 

of emergence, it is logical to attempt to track the complex 

system as a whole, and do so continuously over time. 

Seemingly paradoxically, accepting uncertainty leading to 

systematic tracking a complex system’s trajectory may then 

help reduce uncertainty, at least in the short term.  

Within the science of complex systems, scientists have 

focused on the patterns inherent to the time series created by 

complex systems. Variability analysis provides a measure of 

the patterns of fluctuation occurring over an interval-in-time, 

in contrast to a point-in-time assessment. Variability analysis 

describes the means by which a time series is 

comprehensively characterized in terms of its overall 

fluctuation, high and low frequency variation, irregularity, 

scale invariant correlation, and more. Both cardiac variation 

[11] and respiratory variation [12-14] were discovered not to 

be random, but rather correlated and contain information. 

Numerous investigators have developed a broad and 

increasing array of analysis techniques that are grouped 

empirically into “domains” of analysis.[15] Research has 

focused on the development of algorithms that optimally 

characterize healthy (physiologic) variability, and the study 

of how illness and aging are associated with deterioration 

into unhealthy (pathologic) variability. Hypothesizing that 

multiorgan variability reflects system-level integrity, then 

monitoring multiorgan variability offers a means to track the 

emergent properties of a complex system. 

The aim of this paper is to introduce Continuous 

Individualized Multiorgan Variability Analysis (CIMVA
TM

) 

software to enable standardized transparent comprehensive 

multiorgan variability analysis derived from standard 

continuously monitored waveforms (e.g. electrocardiogram 

(ECG), end-tidal capnography (EtCO2), chest impedance, 

oxygen saturation, etc.). The following is a general 

description of the methodology and potential clinical utility 

of CIMVA. 
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II. OVERVIEW OF CIMVA SOFTWARE 

CIMVA is structured as a library of software routines that: 

a) performs a continuous measurement of the degree of 

variation and complexity in a patient’s biosignals over time 

and b) generates reports and output files that clinicians and 

researchers can use to investigate the clinical utility of these 

measurements in their own patient populations. A simplified 

block diagram of the overall CIMVA system is shown in 

Fig. 1, followed by a brief description of each component.  
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Fig. 1.  Overall CIMVA system. Data flow shown is for the case where the 

input data is a regularly sampled waveform. 

A. Input Physiological Data 

The inputs to the CIMVA system are time-varying 

biomedical signals that have been acquired from a patient. In 

general, these fall into three categories: 

1. Regularly sampled waveforms, e.g. ECG (500Hz 

typical) or EtCO2 (125 Hz typical)  

2. Regularly sampled numerics, e.g heart rate or 

respiratory rate  (1 Hz typical) 

3. Irregularly sampled time series, e.g. tachogram (one per 

heartbeat) or tidal volume (one per breath), possibly 

annotated with additional information (e.g. sinus 

rhythm) 

CIMVA software can harvest this data from the major 

intensive care unit (ICU) monitoring vendors as well as 

several ambulatory physiological monitors. 

B. Windowing of Input Data 

CIMVA is designed to calculate measures of physiological 

signal complexity and variability as a continuous output. 

This is done with a sliding window approach, defined by the  

CIMVA analysis window size (that defines the portion of the 

input signal used in the current window) and the CIMVA 

step size (that defines by how much the window is shifted 

from one iteration to the next). The CIMVA output measures 

are calculated using the input signal values at each step, a 

process that results in a new set of CIMVA outputs at a rate 

determined by the CIMVA step size [16]. 

C. Waveform Pre-processing and Waveform Artifact 

Detection (if required) 

Pre-processing is applied to waveform inputs to condition 

the signal for subsequent analysis. These operations may 

include noise reduction, filtering and re-sampling. Certain 

artifacts (e.g. leads disconnected) are detected in the 

waveform and stored as a data quality measure for future 

processing. 

D. Event Detection (if required) 

For waveform inputs, a time series of events is extracted 

for subsequent analysis. For example, heart rate variability 

(HRV) studies typically operate on the R-R interval time 

series (or tachogram), which requires accurate determination 

of R-wave locations. Other examples of event detection 

include extraction of inter-breath intervals from respiratory 

waveforms (for calculation of respiratory rate variability, 

RRV). 

E. Artifact Detection and Removal 

Physiological signals (and time series derived from these) 

are frequently contaminated by artifact, which can be due to 

pathological conditions or issues with instrumentation 

(spurious noise). Detection and elimination of artifact is 

performed by the CIMVA system (using published, 

validated algorithms for measurement of, for example, atrial 

fibrillation [17] and ECG signal quality index [18]) so as not 

to confound the downstream variability analysis. Data 

quality measures from this stage include measurements of 

the degree to which artifact removal was required.  

F. CIMVA Core 

CIMVA Core calculates a diverse panel of complexity and 

variability measurements (called CIMVA output measures) 

based on the event data in the analysis window. The CIMVA 

Core is composed of 96 measures belonging to five domains 

of variability: Time, Frequency, Scale-Invariant, Entropy 

and Nonlinear [15]. Each domain defines the type of 

information content that the variability measure extracts, and 

it is used to investigate specific properties characterizing the 

system under study. 

G. Post-processing based on Quality Measures 

The preceding stages provide quality measures associated 

with a given analysis window’s input data. In certain 

instances, however, the data quality may be so corrupted, 

that the CIMVA Core outputs would be untrustworthy. 

CIMVA has been designed in a manner which allows the 
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user to select his/her own thresholds which would cause the 

rejection of a window. 

H. CIMVA Outputs 

The following are available at the end of a CIMVA 

analysis: 

1. Report with summary (in .pdf format) 

2. Matrix of numerical results, with one row per CIMVA 

analysis window (in .csv format). The columns of the 

matrix are structured in groups: a) properties of the 

CIMVA analysis window, b) data quality measures, c) 

CIMVA Core outputs. 

III. CLINICAL APPLICATIONS 

In this section we briefly introduce and discuss some of the 

results achieved by applying CIMVA analysis in various 

clinical scenarios.  

 

A. Predicting Extubation Failure 

 

Expeditious yet safe extubation is critically important in 

the care of mechanically ventilated ICU patients. Failed 

extubation (defined as re-intubation within 48 hrs) is 

associated with increased morbidity, mortality and costs. 

Spontaneous breathing trials (SBTs), whereupon patients are 

subjected to brief periods of reduced ventilatory support 

(taking on a greater workload of breathing as a simulation of 

breathing after extubation) are the current gold standard of 

care to predict failed extubation. Nonetheless, several studies 

have determined that 15% patients who are extubated 

subsequently fail [19].  

 

We performed continuous HRV and RRV monitoring 

during 125 SBTs in 60 patients. Twelve of these patients 

were excluded for missing data and protocol violations, 

leaving a total of 48 patients – 41 of these passed extubation 

and 7 of these failed extubation. Restricting analysis to the 

last SBT performed prior to extubation, patients who 

subsequently failed extubation had a greater absolute loss of 

RRV compared to patients who passed extubation as 

measured by several CIMVA Core output measures 

(p<0.005). There were non-significant reduction in the 

change in HRV associated with failed extubation. No 

correlation was found between measures of variability and 

standard measures of readiness for extubation (submitted for 

publication). A multi-center observational study, supported 

by the Canadian Critical Care Trials Group, is underway to 

evaluate the added value of CIMVA (compared to standard 

of care) and determine thresholds of HRV and RRV that 

predict extubation failure. 

 

B. Early Detection of Infection 

 

Early diagnosis of sepsis leading to aggressive 

resuscitation involving antibiotic administration is vital to 

recovery and survival. Patients undergoing bone marrow 

transplantation (BMT) for the treatment of acute leukemia 

become neutropenic (abnormally low white blood cell count) 

as a side effect of the BMT. These neutropenic patients 

comprise a group at a high risk of sepsis (approximately 

80%) and mortality (approximately 5%). Current clinical 

approaches for diagnosing sepsis are based on an increased 

absolute value of one or more vital signs (e.g. fever) in 

addition to laboratory tests such as blood cultures to look for 

evidence of a pathogen.  

We performed HRV analysis on continuously recorded 

heart rate waveforms of 21 ambulatory outpatients as they 

underwent BMT. Of the 21 patients enrolled, 4 patients 

withdrew, leaving 17 patients who completed the study 

(12±4 days of continuous Holter monitoring). Fourteen 

patients developed sepsis requiring antibiotic therapy, 

whereas 3 did not. On average, for 12 out of 14 infected 

patients (86%), a significant (25%) reduction in several 

CIMVA Core output measures were observed prior to the 

clinical diagnosis and treatment of sepsis. For infected 

patients, wavelet AUC [20] demonstrated on average a 25% 

drop from baseline 35 hours prior to sepsis. For non-infected 

patients, all measures except two showed no significant 

reduction. For further details refer to [21]. 

 

C. Monitoring Severity of Illness in the ICU 

 

Severity of illness is determined by clinical judgment and 

is never certain in critically ill patients. Although illness and 

injury severity scores and organ dysfunction scores exist, 

they represent population-based measures and are not well 

suited to evaluate the prognosis or severity of illness in 

individual patients over time.  

Continuous data collection was performed for 35 patients 

by harvesting the ECG and EtCO2 waveforms (already 

monitored as per standard practice). These data were 

collected continuously for 24 hours a day (the enrollment in 

the study lasted on average 11 days per patient). In this pilot 

study we demonstrated feasibility of continuous HRV and 

RRV analysis in critically ill patients. First, we observed 

correlation between increasing organ failure and reduced 

variability. Patients with low levels of organ failure had 

preservation of HRV and RRV, while patients with 

increasing degree of organ failure had progressively lower 

levels of variability. Decreasing HRV was observed in 

patients (n=6) as they progressed towards the onset of shock 

(as defined by initiation of vasopressor and/or inotrope 

therapy). Increasing RRV was observed in patients as the 

progressed towards resolution of respiratory failure and 

extubation (n=15) (submitted for publication). 

 

D. Evaluation of Cardiopulmonary Fitness 

Since the 1970s, staged exercise testing has been 

increasingly employed in the outpatient or ambulatory care 

setting, providing an assessment of cardiac and respiratory 

functioning, determining an individual’s pre-, peri-, and 

postoperative risk assessment, and measuring fitness level. 

Although cardiopulmonary exercise testing is a well-

justified assessment tool, its major limitations include 

physical incapability, a lack of motivation and desire, 

reluctance to repeatedly perform exercise testing to 

exhaustion, and invasive and expensive test equipment. 
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Alternative measures that are noninvasive, inexpensive and 

require minimal exertion should be explored. 

39 healthy and physically active (Group 1: ≤25 years of 

age, n=12; Group 2: ≥40 years of age, n=12) or unhealthy 

and less physically active (Group 3: ≤25 years of age, n=3 or 

Group 4: ≥40 years of age, n=12) subjects had R-R interval 

data recorded from a portable Holter monitor which 

participants wore for 24 hrs prior to maximal aerobic 

capacity (VO2max) test using a metabolic cart. 

The average Day 1 awake HRV was found strongly 

correlated with cardiopulmonary fitness; such that both 

wavelet AUC (r=0.83, p<0.001) and detrended fluctuation 

analysis (DFA) (r=0.83, p<0.001) accounted for 

approximately 80% of the variation in cardiopulmonary 

fitness. Furthermore, a paired t-test demonstrated significant 

differences between young healthy and older unhealthy 

(p<0.05) and older healthy and older unhealthy (p<0.05) for 

measures of standard deviation and DFA (submitted for 

publication). 

IV. DISCUSSION 

In the introduction, we have seen how the science of 

complex systems as grown of interest since 1980. During the 

following three decades many researchers have successfully 

applied this paradigm to solve problems in medicine. Some 

recent works include the assessment of ICU patients’ 

mortality through HRV [22], the prediction of neonatal 

sepsis through HRV [23] and the characterization of RRV 

during spontaneous breath trials [24]. These results motivate 

a further characterization of variability analysis, shifting 

current research towards two principal future challenges. 

The first challenge is to characterize multi-organ 

variability. This type of analysis focuses in the mutual 

information exchanged between coupled physiological 

systems. Examples in the literature are the evaluation of 

interactions between the cardiac and respiratory systems 

through spectral analysis [25], or the evaluation of the 

differences between heart rate variability and blood pressure 

[26]. Despite the clear relevance of these analyses, the 

research in this area still needs to take advantage of novel 

multivariate methods and multi-signal comparison. Indeed, 

few studies compare two signals at one time, and rarely 

more than two signals are simultaneously considered. 

The second challenge corresponds to the exploration of 

the nature and meaning behind variability and its domains. 

Even if inaccurate in categorizing all the measures today 

available, a classification is needed to better understand the 

meaning and the nature of variability. For instance, it is well 

known that the measures belonging to the frequency domain, 

if applied to heart rate variability, are capable to estimate the 

sympathetic and parasympathetic activity of the brain [27]. 

However, the link between physiology and other domains of 

variability, so as the link with single measures of variability, 

still remains to be discovered.  

Including a variety of up-to-date techniques of nonlinear 

time series analysis, and incorporating in its core 

multivariate techniques for multi-organ analysis, CIMVA 

represents a tool to face these challenges and improve 

healthcare at the bedside. 
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