
  

  

Abstract— We wish to save lives of patients admitted to 
ICUs.  Their mortality is high enough based simply on the 
severity of the original injury or illness, but is further raised by 
events during their stay. We target those events that are 
subacute but potentially catastrophic, such as infection.  Sepsis, 
for example, is a bacterial infection of the bloodstream, that is 
common in ICU patients and has a >25% risk of death. 
Logically, early detection and treatment with antibiotics should 
improve outcomes.  Our fundamental precepts are (1) some 
potentially catastrophic medical and surgical illnesses have 
subclinical phases during which early diagnosis and treatment 
might have life-saving effects, (2) these phases are 
characterized by changes in the normal highly complex but 
highly adaptive regulation and interaction of the nervous 
system and other organs such as the heart and lungs, (3) teams 
of clinicians and quantitative scientists can work together to 
identify clinically important abnormalities of monitoring data, 
to develop algorithms that match the clinicians' eye in detecting 
abnormalities, and to undertake the clinical trials to test their 
impact on outcomes. 

I. INTRODUCTION 
HILE patents in intensive care units throughout a 
modern tertiary care hospital differ in age, diagnosis, 

treatment, expected length of stay and prognosis, they all 
share one thing in common.  They are all vulnerable to 
subacute, potentially catastrophic complications for which 
early diagnosis leading to early therapy should improve their 
outcomes.  While early signs of impending problems may 
well be apparent to experienced clinicians, there are 
countless stories of subacute illness suspected too late.  A 
general solution is to devise continuous monitoring 
algorithms that detect signatures of physiology going wrong. 

This idea stands on the work of Goldberger (10), 
Buchman (8) and others, who based their viewpoints of 
health and illness on concepts of non-linear dynamics.  In 
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this context, the body is a collection of interconnected cells, 
organs and wiring incessantly adapting to circumstance 
through signals and responses.  A widely observed 
manifestation is the variation in the times between 
heartbeats, a result of the highly responsive autonomic 
nervous system input to the sinus node. Thus heart rate 
variability (HRV) is a feature of healthy humans, and 
reduced HRV signifies illness.  It is clear that there are many 
appearances of normal heart rate time series, but only one 
during illness. The interpretation is that illness leads to a 
reduction in complexity of human physiology, and to 
monotonous behavior that is oblivious to input signals.  
These are powerful concepts not previously harnessed and 
reduced to the practice of medicine. 

We have pioneered the bedside application of these ideas.  
We began our work in the Neonatal ICU with the goal of 
early detection of neonatal sepsis in very low birth weight 
(VLBW, <1500g) infant (1, 2, 4, 5, 7, 11-17, 19, 20, 22, 24, 
26).  This is a clear example of the kind of illness where 
early detection and early therapy with antibiotics should 
favorably alter the course of the illness.  We found a 
signature of pathophysiologic dynamics in the heart beat 
intervals, and we developed a predictive model based on 
detection of the abnormal heart rate characteristics (HRC) of 
reduced variability and transient decelerations using, among 
other things, tools of non-linear dynamical analysis. 

Here we review the major essential elements in this 
research field.  We begin with a general overview, and then 
describe the kinds of databases that we use, the 
mathematical and statistical tools, and the kinds of results 
we get. 

II. METHODS 

A. General Approch 
1.  Pick the right problem 
This is the hardest part. We seek clinical scenarios in 

which there is a subclinical phase where we might expect 
that early diagnosis and treatment will improve outcomes.  
Neonatal sepsis is the perfect example – common (25% of 
very low birth-weight infants), deadly (mortality 50% 
higher, about 20% overall), and no good clinical signs to 
alert the clinicians. On the other hand, ventricular 
tachyarrhythmia in adults with heart disease is not as good a 
target. While common, deadly and without early detection 
strategies, there is no immediately preventive measure.  
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Implanted defibrillators, which await the problem but then 
rapidly treat it, will be hard to surpass. 

 
2.  Look at the data 
This is the most time-consuming part. Clinicians and 

mathematicians spend hours together looking at the 
physiological waveform and vital sign records for patients 
who had the events listed above.  We identify with our eyes 
the features that we wish to quantify - for example, this is 
how we found reduced variability and transient 
decelerations prior to neonatal sepsis. 

 
3.  Fear no math 
This is the most interesting and fun part.  We do not 

subscribe blindly to the idea that physiological variability 
and its frequency components hold all the answers, though 
we agree the idea of reduced complexity during illness is a 
very useful framework.  Reduced variability and transient 
decelerations would never have come to light, though, had 
we used only traditional heart rate variability measures.  
Here is the work of the quantitative scientists, then, to 
reduce the observations of the clinicians to measured 
parameters, often novel.   

 
4.  Do clinical trials 
This is the most nerve-wracking part.  We developed 

heart rate characteristics analysis in 4 years, and then spent 
nearly 7 in a randomized trial.  Randomized trials are the 
only way to convince clinicians to change their practice, and 
this is how it should be – too many clinical practices have 
vaporized in the face of randomized trials, such as the use of 
antiarrhythmic drugs to prevent sudden cardiac death, or 
hormone replacement after menopause to prevent heart 
disease.  We anticipate that predictive monitoring, though, 
will improve outcomes and not lead to new harms. 

 

B. Databases 
1.  Data from the prospective HeRO trial in the NICU.  

The prospectively collected data elements include RR 
intervals, calculations of sample entropy, sample asymmetry, 
standard deviation along with times and results of blood 
cultures obtained for suspicion of sepsis, antibiotic use, time 
on mechanical ventilator, and death. 

 
2.  Waveform and vital sign data collected daily from ICU 

beds.  Since January 2009, we have been storing digital 
waveforms from as many as 75 beds, a partial sample of the 
200 ICU and 100 monitored ward beds.  We store 3 EKG 
leads, respiratory impedance waveform, and the O2 
saturation signal along with GE monitor-derived bedside 
alarms and vital signs – about 75MB per bed per day.  Any 
signal displayed on the bedside monitor is automatically 
captured – this is relevant to the Neurological ICU where, 
for example, intracranial pressure waveforms are important.  

Waveforms are archived on our dedicated grid computing 
cluster consisting of 10 desktop and workstation PCs with a 
total of 80 processing cores, 40 GB RAM, and 100 TB 
storage. The cluster is hosted inside the UVa secure clinical 
network, and two firewalls prevent unauthorized access.     

 

C. Mathematical and statistical tools 
Among others, we employ: 
Time-domain parameters, such as the mean and variance 

to estimate the center and the width of the distributions.  
Most observations during illness in adults, including those 
with trauma are of reduced HRV (3, 23) measured is 
standard ways (25).  

Frequency-domain parameters, or band specific 
variances.  An incontrovertible finding is of reduced sinus 
arrhythmia during illness, reflected as a reduced area under 
the spectrum at the respiratory frequency.   

Phase domain, in which the instantaneous phase of 
waveforms are found using the Hilbert transform. This is a 
novel application, and results in phase interaction plots that 
quantify the heart rate impact of breaths at different points 
of the cardiac cycle.  For example, the coincidence of a 
heartbeat and the beginning of expiration results in more 
dramatic slowing. 

Signal quality index, a package of algorithms developed 
by Clifford and coworkers in the large MIMIC II database of 
ICU waveforms (6, 21).  It results in RR intervals, EKG-
derived respiration, and a fused chest impedance 
plethysmography waveform.  

Entropy estimation using sample entropy and the 
coefficient of sample entropy, which we have recently 
developed as a detector of atrial fibrillation in very short – 
12 beats – heart rate time series.  We will test the idea that 
changes in entropy of the heart rate and other time series is 
altered as illness develops (9).   

Deceleration (or acceleration) detection using a novel 
wavelet-transform-based algorithm that we developed for 
neonatal sepsis detection (7).  The algorithm is readily 
adapted to detect the accelerations that we identified in 
preliminary inspection of trauma ICU data.  

 
We combine them using multivariate statistical methods, 

such as logistic regression (this is the basis of the HRC 
index for the NICU)(15, 16, 18), k-nearest neighbor analysis 
(26), neural nets, and other techniques. Generally, 50 events 
allow for a predictive model with 5 predictive variables and 
95% CI of 0.3 around the ROC area.  We designate the 24 
hours prior to the event as the outcome of interest. Thus the 
output of the model is the probability of an event in the next 
24 hours, a truly predictive result.  We divide by the average 
probability of the event, and present the clinician with the 
fold-increase in risk of an upcoming event.  In the case of 
neonatal sepsis prediction in the NICU, we call this the HRC 
index or the HeRO score. 
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III. RESULTS 
A. Visualization of database and calculations 
We have developed methods to view and study data for 

many infants at once.  We array clinical data and extracted 
monitoring parameters along a time axis for the entire 
population.  The horizontal axis is time in days since birth.  
From the existing database of more than 1100 admissions, 
more than 220 of the VLBW. 

 
1.  Natural history of NICU admissions.  The graphic in 

Figure 1 represents each infant as a horizontal line extending 
from birth to discharge in terms of post-menstrual age.  Each 
row is an individual patient with the start, stop and length of 
hospitalization marked by post-menstrual age (PMA) in 
weeks.  The right hand vertical bar explains the gray scale 
coding.  Thus the most premature infants are admitted near 
PMA 23 or 24 weeks and more are discharged at a later 
PMA compared with infants born closer to term. 

 
2.  Heat map of respiratory support in VLBW infants.  

The color scale on the right is arranged so that less intense 
and invasive respiratory support modalities are marked by 
cooler colors.  Figure 2 affirms the clinical tenet that more 
premature infants receive more intense support, and for 
longer.  Note that many infants of GA > 31 weeks require no 
support for much of the NICU stay. 

 
3.  HeRO score in VLBW infants color-coded by fold-

increase in risk of sepsis in the next 24 hours. These values 
were calculated automatically from the RR intervals as 
determined from the stored physiologic waveform database. 
As shown in Figure 3, high scores are not limited to the 
most premature. 

This new database is being used to develop new time 
series algorithms to detect neonatal apnea, and to study the 
interaction of breathing and heart rate using non-linear 
dynamical tools centered in the phase domain. 

 
B. Multivariable statistical prediction of outcome 
A non-invasive estimate of the risk of  in-hospital death 

that is available from early in the hospital course and that is 
constantly updated might be a useful tool in NICU clinical 
care.  We modeled 152 deaths in 1489 VLBW infants who 
received only conventional monitoring using the 
prospectively obtained data described above in a 
randomized trial of HRC monitoring using multivariable 
logistic regression.  In order of significance, the average 
HeRO score, presence of ventilator, birth weight, Apgar 
score at 5 (but not 1) minutes, and sepsis within the past 10 
days predicted mortality (p<0.005 for each).  The model had 
good discrimination, with ROC area near 0.85 starting at 3 
hours of monitoring.  Thus HRC monitoring and clinical 
data about ventilation and sepsis predict NICU death 
beginning at 3 hours.  These findings may add to the benefit 
of HeRO monitoring in the NICU. 

 
 
 

 
Fig. 1.  NICU stays for all University of Virginia (UVa) 
infants: the right hand axis gives the status of the infant. 
Death=death in NICU; NICU=NICU days; D/C= discharge. 

Fig. 2.  Heat map of respiratory support: the right hand axis 
relates the color to the level of support, with warmer colors 
denoting more invasive or vigorous support 

Fig. 3.  Heat map of HeRO scores: the right hand axis relates 
the color to the score, with warmer colors denoting higher risk 
of imminent illness. 
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C. Patterns of neonatal apnea in individual patients 
Using a novel detector of apnea, we can detect and 

characterize episodes in our new database of waveforms and 
vital signs.  Figure 4 shows an event map of respiratory 
support, apnea episodes, and monitor alarms for an infant 
who died of necrotizing enterocolitis after a 41 day NICU 
stay. The left vertical axis is labeled categorically:  
NCPAP, nasal CPAP;  
HFNC and LFNC, high- and low-flow nasal cannula; 
ABD>30 and >10, central apneas with bradycardia and O2 
desaturations lasting >30 and >10 seconds;  
A>20 and >10, apneas lasting >20 and >10 seconds;  
AB, apnea and bradycardia nursing sheet entry; BRADY and 
APNEA, monitor alarms;  
HR HI and LO, monitor alarms for high and low HR; SPO2 
HI and LO, monitor alarms for high and low O2 saturation.  

The right vertical axis relates to the green line (number of 
ABD30 events in past 24 hours) and the red line is the 
HeRO score (in fold-increase in risk of sepsis in next 24 
hours). 

 
Fig. 4.  Respiratory and HeRO map of a single infant 

 
We use these displays in our joint meetings of clinicians 

and quantitative scientists to look for phenomena of clinical 
relevance.  Research questions include: are prolonged 
apneas (ABD>30 events) preceded by an increase in the 
number of shorter apneas? 

IV. CONCLUSIONS 
Predictive monitoring for subacute potentially 

catastrophic illnesses in ICU patients stands to transform the 
practice of medicine.  Developing such algorithms, though, 
is very time- and labor-intensive, and requires large 
databases with meticulous clinical annotation, and close 
collaboration of quantitative scientists with expert clinicians.  
We are excited by the prospects of this field based on our 
results in premature infants with sepsis, and are extending 
these ideas and methods to the adult ICUs. 
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