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Abstract— The present study introduces sparse modeling for
the estimation of propagation patterns in intracardiac atrial
fibrillation (AF) signals. The estimation is based on the partial
directed coherence (PDC) function, derived from fitting a
multivariate autoregressive model to the observed signals. A
sparse optimization method is proposed for estimation of the
model parameters, namely, the adaptive group least absolute
selection and shrinkage operator (aLASSO). In simulations
aLASSO was found superior to the commonly used least-
squares (LS) estimation with respect to estimation performance.
The normalized error between the true and estimated model
parameters dropped from 0.20±0.04 for LS estimation to
0.03±0.01 for aLASSO when the number of available data
samples exceeded the number of model parameters by a factor
of 5. The error reduction was more pronounced for short data
segments. Propagation patterns were also studied on intrac-
ardiac AF data, the results showing that the identification of
propagation patterns is substantially simplified by the sparsity
assumption.

I. INTRODUCTION

Recent progress indicates that future ablation treatment of
atrial fibrillation (AF) should be tailored to the individual
patient in order to achieve optimal success rate [1], [2].
Therefore, new methods are required which improve the
understanding of AF mechanisms so that the ablation catheter
can be accurately guided to the atrial sites which are relevant
for terminating the arrhythmia. Methods for propagation
pattern analysis are thus of interest as they have the potential
to point out ectopic foci and to identify reentrant activities.

Recently, our group proposed the partial directed coher-
ence (PDC) function for propagation pattern analysis during
AF, quantifying the causal coupling between multiple signals
in the frequency domain [3]. The derivation of the PDC is
based on fitting a multivariate autoregressive (MVAR) model
to multichannel recordings. Commonly, least-squares (LS)
estimation is employed to estimate the MVAR parameters.
Improvements in the estimation may be achieved by intro-
ducing constraints which encourage sparsity, justified by the
observation that connectivity during AF is a priori sparse as
the coupling between different sites decreases with distance.

Constraints based on the least absolute selection and
shrinkage operator (LASSO) [4] have been shown to be
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particularly effective for estimating sparse models. In the
present paper, the adaptive group LASSO (aLASSO) [5] is
proposed for improving MVAR modeling of atrial activity
during AF. This variant of LASSO allows the construction of
groups of unknown parameters which can be pruned jointly.
Thus, grouping together MVAR parameters which model
coupling from one signal to another should automatically
lead to a solution which is sparse with respect to the
causal coupling. Obviously, improved accuracy of the MVAR
parameter estimates translates to improved accuracy of the
PDC.

In the following, details on estimating MVAR models with
LS and aLASSO are reviewed. In order to evaluate the impact
of the two methods for MVAR parameter estimation on the
PDC, simulations are performed. Furthermore, results are
presented when the method is applied to AF data acquired
with a two-dimensional catheter.

II. METHODS

A. Multivariate Autoregressive Modeling

The observations x(n) =
[
x1(n) · · · xN (n)

]T
, n =

1, . . . , T , obtained simultaneously from N atrial sites, are
assumed to be represented by an MVAR model of order m

x(n) =

m∑
k=1

Akx(n− k) + w(n), (1)

where Ak is an N × N matrix comprising the AR
parameters aij(k), i, j = 1, . . . , N , and w(n) =[
w1(n) · · · wN (n)

]T
is a multivariate white noise pro-

cess with diagonal covariance matrix Σw, in which each
diagonal element σ2

jj defines the variance of wj(n).
It is convenient to rewrite (1) in matrix form,

X = YB + W, (2)

where

X =
[
x(1) · · · x(T )

]T
=
[
x1 · · · xN

]
,

W =
[
w(1) · · · w(T )

]T
,

B =
[
A1 · · · Am

]T
=
[
β1 · · · βN

]
,

y(n) =

 x(n)
...

x(n−m+ 1)

 ,
Y =

[
y(1) · · · y(T )

]T
.

The LS solution for the MVAR parameters is given by [6]

β̃i = arg min
βi

||xi −Yβi||2, (3)
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where || · || denotes the L2 norm. In order to achieve a
sparse solution, certain constraints are introduced in (3). The
aLASSO, in which the parameters in βi are divided into L
non-overlapping groups β

(l)
i , l = 1, . . . , L, is defined by [5]

β̂i = arg min
βi

||xi −
L∑
l=1

Ylβ
(l)
i ||

2 (4)

subject to
L∑
l=1

αil||β(l)
i || ≤ t,

where Yl consists of those columns of Y that correspond to
the parameters contained in β

(l)
i , αil is a positive weighting

factor, and t is the upper bound of the constraint.
In the present study, all parameters which model the

coupling from one site to another are grouped together
such that they can only be pruned jointly, i.e., β

(l)
i =[

ail(1) · · · ail(m)
]T

, l = 1, . . . , N . The corresponding
weighting factors have been proposed to adapt to the data
when employing the LS solution [5],

αil = ||β̃
(l)

i ||−γ , γ > 0. (5)

B. Model Identification and Selection
The algorithm for least angle regression selection has been

employed to solve aLASSO [7]. The algorithm starts with
β̂

(l)

i = 0 for all l and approaches in a maximum of L
iterations the LS solution, i.e., β̂i = β̃i. In order to select the
appropriate iteration step, the Bayesian information criterion
(BIC) is employed [5]. For aLASSO, the optimal γ is found
by a grid search and determined by the BIC [8]. Finally, the
BIC is employed to determine the model order m.

C. Partial Directed Coherence
The PDC from xj(n) to xi(n) is given by [3]

πij(f) =
1
σii
Āij(f)√∑N

k=1
1
σ2
kk
|Ākj(f)|2

, (6)

where Āij(f) is an element of Ā(f), being the Fourier
transform of the MVAR model in (1),

Ā(f) = IN×N −
m∑
k=1

Ake
−2πfk, (7)

where I denotes the identity matrix. The value of the
magnitude-squared PDC |πij(f)|2, in the following referred
to as PDC, ranges between 0 and 1 and represents the
direct coupling strength from xj(n) to xi(n) at frequency f ,
viewed in relation to the direct coupling strength of xj(n)
to all other signals xk(n), k 6= i.

During AF, the PDC is of special interest in an interval
centered around the dominant frequency (DF) of the source
xj(n). Thus, the integrated PDC is defined by [3]

Π2
ij =

1

2∆f

∫ f0+∆f

f0−∆f

|πij(f)|2df, (8)

where f0 denotes the DF, corresponding to the highest peak
in the 3–12 Hz range of the auto-spectrum of xj(n), and ∆f
determines the width of the integration interval.
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Fig. 1. Projection of the sphere employed in the simulations illustrating
the positions of the recording sites and the propagation pattern as imposed
by the binary connectivity matrix C. The propagation originates at site A3,
and a more disorganized region of propagation was defined at sites C1, C2,
C3, D1, D2, and D3, while D4 was left isolated.

D. Surrogate Data Testing

Surrogate data testing is performed for the integrated PDC
by computing Π2

ij for both the original time series x(n)

and M surrogate time series y(l)(n), l = 1, . . . ,M [3].
Each y(l)(n) is computed specifically for the causal coupling
under investigation such that there is no direct causal cou-
pling from y

(l)
j (n) to y(l)

i (n). The integrated PDC calculated
from the original time series is considered significant if
its value exceeds the 95th percentile of the distribution of
corresponding values obtained from the surrogate data sets.

III. DATABASE

A. Simulations

Based on the MVAR model in (1) a number of simulations
were carried out for the geometry of a sphere with N = 16
recording sites. The sites were distributed along four lines
of longitude, A to D, situated at 0◦, 90◦, 180◦, and 270◦,
respectively. Four evenly spaced bipolar electrodes were
placed at each longitude and denoted A1 to A4, . . . , D1
to D4.

In a first step, a propagation pattern was imposed by
defining an N × N binary connectivity matrix C such that
Cij = 1 when propagation was allowed from site j to i, and
Cij = 0 otherwise, except Cii = 1, see Fig. 1. In a second
step, each direct coupling from site j to i was assigned a
probability which decreased with distance [9],

Pij = exp

(
−
d2
ij

λ2

)
, (9)

where dij is the distance between recording sites i and j
determined for a sphere with unit radius, and the decrease
rate is controlled by λ ≥ 0, here chosen to λ = 1.5. Thus,
direct coupling from site j to i was present when Cij = 1 as
well as δij ≥ 1−Pij , where δij was a uniformly distributed
random variable, U(0, 1). For the chosen settings, 42 out
of the N2 = 256 possible direct couplings became non-
zero. In the final step, the MVAR parameters corresponding
to the direct couplings were determined for model order
m = 3. The MVAR parameters aii(k) were determined
such that the MVAR process resembled the preprocessed
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AF signals, i.e., with narrowband characteristics. Complex
conjugated pole pairs p(i)

1/2 = r0e
±ιφ0 , i = 1, . . . , N , were

defined by choosing the radius r0 and the angle φ0 from
U(0.5, 0.6) and U(0.9, 1.1) · π/4, respectively. Additional
real poles p(i)

3 , i = 1, . . . , N , were chosen from U(0.1, 0.3).
The remaining parameters aij(k), i 6= j, were sampled from
a normal distribution N (0, 0.5). Furthermore, employing
Σw = IN×N , the non-zero integrated PDCs Π2

ij , which in
the simulations were calculated by integrating |πij(f)|2 over
the entire frequency range, yielded 0.38±0.29.

Accuracy of the estimation methods is evaluated with the
normalized error function

ε(M) =
||M− M̂||2

||M||2
, (10)

and is employed for both the MVAR parameters, i.e., M =
B, and the integrated PDC, i.e., M = Π2, which is an N×N
matrix comprising the different Π2

ij .

B. AF Recordings

The method is illustrated on a recording acquired from a
patient with paroxysmal AF who underwent an electrophys-
iological study with a multi-electrode basket catheter (Con-
stellation catheter, EP Technologies, Boston Scientific) in the
right atrium (RA). The basket catheter consisted of eight
splines, A to H, each carrying eight evenly spaced electrodes.
Thirty-two bipolar intracardiac electrograms were acquired
by coupling adjacent pairs of electrodes (CardioLab System,
30–500 Hz [Prucka Engineering, Inc.]). The sampling rate
was 1 kHz, and one 5-s segment was chosen for analysis.

The electrograms were preprocessed with bandpass filter-
ing (finite impulse response (FIR), 40–250 Hz), rectification,
and lowpass filtering (FIR, 0–20 Hz) [3]. This preprocessing
results in signals with an amplitude proportional to the high-
frequency components (40–250 Hz), which correspond to
the rapid changes in amplitude characteristics of the atrial
activations. Finally, the sampling rate was decimated to
100 Hz.

IV. RESULTS

Based on the above simulation model, 20 simulations were
carried out for sample sizes T = 5mN , 3mN , and 2mN .
For the AF recordings, the optimal model order was searched
for in the interval [1,15], the number of surrogate time series
was set to M = 100, and the integrated PDC was obtained
for ∆f = 0.5 Hz.

A. Simulations

The normalized error functions ε(B) and ε(Π2) are
displayed in Figs. 2(a) and (b), respectively. The results show
that aLASSO performs much better in estimating the MVAR
model and the integrated PDC than does LS estimation for
all three sample sizes T . Furthermore, the improvement in
estimation accuracy can be seen to increase with decreasing
sample size.

B. AF Recordings

The estimated model order was m̂ = 4. The percentage of
significant direct couplings between different sites decreases
slightly from 8.6% in LS estimation to 8% for aLASSO.
The corresponding Π2

ij ranges from 0.05 to 0.41 (0.11±0.06)
in LS estimation and from 0.0001 to 0.52 (0.12±0.11) in
aLASSO.

The propagation pattern derived from LS estimation is
rather difficult to interpret, see Fig. 3(a). A clearer man-
ifestation of the propagation pattern is provided by the
directed graph derived from aLASSO, see Fig. 3(b), which
suggests a propagation originating from the low septal RA
close to sites EF3 and EF4. From there, the electrical
activity propagates caudocranially in the septal RA as well
as transversely towards the anterior and posterior RA. In
the posterior/posterolateral wall, craniocaudal propagation is
indicated, and finally, the propagation spreads towards the
lateral RA from both anterior and posterolateral regions.

V. DISCUSSION

Successful estimation of the MVAR parameters is crucial
for successful estimation of the PDC, since the calculation
of the PDC is derived from the model parameters. In order
to incorporate prior information on sparsity of the solution
aLASSO was proposed, which stands in contrast to LS
estimation in which “full” connectivity is implicitly assumed.
In detail, aLASSO improves the estimation by introducing
a constraint on the LS solution which is defined as an
intermediate between the L1 and L2 norm. While the L2

norm is responsible for avoiding overfitting, the singularities
caused by the L1 norm achieve sparsity. The sparsity of
the resulting solution can for the analysis of intracardiac
AF recordings be motivated by the observation that direct
couplings over longer distances are likely to be zero.

Previously, other LASSO variants such as the ordinary
LASSO and group LASSO have been employed for MVAR
estimation, e.g., when analyzing the functional connectivity
between different brain areas [9], [10]. In those studies, the
main interest was the detection of directed information flow
based on tests applied directly to the MVAR parameters.
In the present work, the accuracy of the estimated MVAR
parameters is also of interest, as they are used in the
calculation of the PDC. From a number of simulations based
on the MVAR model, aLASSO leads to major improvements
in estimation accuracy of the MVAR model as well as the
PDC when compared to LS estimation.

The method has been evaluated on a 5-s segment of
a recording acquired in the RA during paroxysmal AF.
For LS estimation, a large number of significant direct
couplings were present over longer distances, leading to
difficulties in the identification of the propagation pattern
from the corresponding directed graph. The interpretation
of the directed graph was substantially simplified by the
sparsity achieved with aLASSO. A propagation starting in
the low septal RA was evidenced, suggesting atrial impulses
entering the RA from the left atrium at the coronary sinus
ostium. This RA breakthrough site as well as the subsequent
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Fig. 2. The normalized error function for (a) B and (b) Π2 for different sample sizes T . For each T , results are presented for LS estimation and aLASSO,
to the left and right, respectively. The lines of the boxes correspond to (from top to bottom) the upper quartile, the median, and the lower quartile.
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Fig. 3. Directed graphs illustrating the propagation pattern during one 5-s segment of AF based on (a) LS estimation and (b) aLASSO. Only direct
couplings corresponding to Π2

ij which are significant and ≥ 0.05 are displayed. The arrow width is proportional to the size of the corresponding Π2
ij .

propagation pattern agrees with clinical observations [11],
which highlights the potential of the PDC as a method for
extracting information on the propagation patterns during AF.

VI. CONCLUSIONS

In the present paper, the estimation of propagation patterns
in intracardiac AF signals in terms of the PDC has been
shown to be substantially improved when prior information
on sparsity is incorporated in the underlying model. The
method may serve as a support for the electrophysiologist
when manual evaluation of the recorded signals is difficult.
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