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Abstract— The goal of this paper is to infer the signaling
pathway related to lung cancer using Reverse Phase Protein
Microarray (RPPM), which provides information on post-
translational phosphorylation events. The computational infer-
ring of pathways is obtained by performing Bayesian network
in combination with prior knowledge from Protein-Protein
Interaction (PPI). A clustering based Linear Programming Re-
laxation is developed for the searching of optimal networks. The
PPI prior knowledge is incorporated into a new scoring function
definition based on minimum description length (MDL). In the
experiment, we first evaluate the algorithm performance with
synthetic networks and associated data. Then we show our
signaling network inference for lung cancer using RPPM data.
Through the study, we expect to derive new signalling pathways
and insight on protein regulatory relationships, which are yet
to be known for lung cancer study.

I. INTRODUCTION

Over the past decade, as high-throughput experimental

methods such as gene microarray have been developed

and improved, a large amount of biological data like gene

expression and Protein-Protein Interaction (PPI) data have

been accumulated. It has allowed many researchers in sys-

tem biology to focus on gene regulatory network inference

with plentiful data of transcription factors as well as gene

expression [1]. Approaches for signaling pathway inference

have been proposed mainly by analyzing PPI data. In this

paper, an emerging protein microarray technology, called the

Reverse Phase Protein Microarray (RPPM), in conjunction

with the quantum dots nano-technology, is used to explore

the systemic process of lung cancer signaling pathway.

Regarding to the use of RPPM, while conventional data

types such as PPI and gene microarray imply only indi-

rect relationships of proteins in signaling pathways, RPPM

can provide more immediate information to measure and

profile the signaling pathways, providing the data on post-

translational phosphorylation events not obtainable by the

analysis of gene microarray and PPI.

To infer the signaling pathway with RPPM data, we per-

form the learning structure of Bayesian networks which have

been effectively used to discover the biological networks. In

learning Bayesian networks, there are typically two different
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approaches, conditional independence test based methods

and so-called scoring-searching based methods that are time-

consuming as a combinatorial optimization problem. We

focus on scoring-searching method that can find optimal

structure rather than approximate result. To this end, we em-

ploy Linear Programming Relaxation (LPR) method, Branch

and Bound searching method [2], and Mutual Information

(MI) [3]. The scoring function is solved as objective function

in linear optimization. LPR and Branch and Bound are used

to find optimal structure, and MI and Z-score are also used

to select more likely edges as a preprocessing.

Since there are essential limitations of biological data such

as the limited number of samples and noise, we integrate

RPPM with PPI data as a prior knowledge so as to assure

more reliable result in estimations. In this paper, we count

the common edges between estimated networks and prior

knowledge (PPI) and then reflect it to the score. By doing

so, the scoring function is enforced to give a higher score to

the estimated network which has more common edges.

II. METHOD

A. Bayesian Networks

We define a set of n nodes as random variables. Each

node can have parent nodes, and an edge is oriented from

a parent to a child as Bayesian network is Directed Acyclic

Graph (DAG). Scoring function which measures the degree

of fitness between estimated network and given data, and

the goal of learning Bayesian network is to find the optimal

network which has maximum score. The score function MDL

[4] is defined as follows:

n
∑

i=1

qi
∑

j=1

ri
∑

k=1

Nijk log(
Nijk

Nij
)−

1

2
C(G) log(N) (1)

where C(G) is network complexity and defined as C(G) =
∑n

i=1(ri − 1)qi. ri is the number of states for variable Xi

and qi is the number of possible configurations of a parent

set of Xi. Nijk is the number of instances in the data set

D where the variable Xi takes the value Xik and have the

jth (j = 1, 2, , qi) configuration of the parent set of Xi. Nij

is the total number of the jth configuration of Xi. Scoring

function is decomposable into each node like
∑n

i=1 Wi(si)
where si is a parent set of Xi and our goal is to find

S = {s1, ..., sn} maximizing
∑n

i=1 Wi(si). However, graph

G should be acyclic with given S. In other words, each si
cannot be selected independently. This is the most critical

problem in learning Bayesian network.
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B. Preprocessing

Since the number of possible parent node set is 2n−1,

exponential searching space is another difficult problem. For

this reason, we prune away as many parent sets as possible

using Context Likelihood of Relatedness (CLR) [3] and the

simple constraint for subset of parent [5]. First, MI is defined

as

MI(Xi, Xj) =
∑

Xi,Xj

p(Xi, Xj) log(
p(Xi, Xj)

p(Xi)p(Xj)
), (2)

and we build MI matrix in which each element MIij
indicates MI value between Xi and Xj . Now we assumed

that two nodes, Xi and Xj , are independent if MIij is

relatively lower than other edges. So, Z-score is used to

measure relative MI in the column and row of given MIij .

zi(xi, xj) = max



0,
Mij −

∑

j′
MIij′

N

σi



 , (3)

zj(xi, xj) = max



0,
Mij −

∑

i′
MIi′j
N

σj



 . (4)

After setting matrix Z with z(xi, xj) = zi(xi, xj) +
zj(xi, xj), we can select only the edges whose Zij is higher

than heuristic threshold. Hence, we exclude unnecessary

edges in practice so that the number of possible si can be

reduced effectively. Also, we can remove parent set s′i if

Wi(si) ≥Wi(s
′
i) for si ⊂ s′i [5]. In addition, the number of

parent of each node can be limited by given a priori number

(e.g. 4 in our experiment).

C. Cluster based Linear Programming Relaxation

Cluster based Linear Programming Relaxation we perform

has been developed in [6] and applied to learning Bayesian

networks in [2].

1) Objective Function: First, we define the objective

function as

max η ·W =

n
∑

i=1

∑

si∈Pa(i)

ηi(si)Wi(si) (5)

where η ∈ P . P is a polytope of acyclic structures where

a vertex corresponds to η = [η1...ηn] and ηi is an indicator

(binary) vector of parent selection for node i. Dimension of

ηi is |si| (number of parent set of node i) and ηi(si) = 1
indicates that si is chosen as the parent set of node i.

2) Constraint: Constraint to be relaxed is defined as
∑

i∈C

∑

si∈Pa(i)

ηi(si)IC(si)≥1 (6)

where C is a cluster (a set of nodes) and Ic(si) is an indicator

function. If a cluster C includes any node of selected si,
Ic(si) = 0. Otherwise, Ic(si) = 1. This constraint is from

the fact that any subset of nodes in acyclic graph has at least

one node whose parent is outside of the acyclic graph. So

if selected S (parent sets) satisfies the constraint for every

possible clusters (all subset of nodes), η(S) is a vertex of

polytope P . With this constraint, dual problem can be defined

as

min
n
∑

i=1

max
si∈Pa(i)

[Wi(si) +
∑

C:i∈C

λCIC(si)]−
∑

C

λC (7)

s.t.λC ≥ 0, ∀C ⊆ V

where V is all subsets of nodes and λC is a dual variable

for each cluster (each constraint). Since the number of λC

is exponential, we initially set all λC to zero and C to ∅
(C ∈ C), and then we iteratively add a single cluster into

C and optimize λC . In every iteration, the relaxation for a

single constraint is performed by adding a cluster and all dual

variables (λC) is updated (optimized). Until dual value is

equal to primal value, cluster is added in C in each iteration.

3) Update Dual Variables: In order to minimize dual

problem, we keep updating all λ in each iteration of adding

cluster. The role of λ is to enforce the constraint in the

selection of parent set. More precisely, once we increase λ,

it is enforced that si lied outside the corresponding cluster

is selected for Ic(si) = 1. Reversely, too small λ causes that

si is selected without considering cluster (Ic(si) = 0). The

part of dual object is given by

JC(λC) =
∑

i∈C

max
si∈Pa(i)

[WC;i(si) + λCIC(si)]− λC (8)

where WC;i(si) = Wi(si) +
∑

C′:i∈C′ λC′IC′(si). To max-

imize JC(λC), we find i ∈ C that minimizing δi =
W 0

C;i − W 1
C;i. Hence, λC is max{(δi1 + δi2)/2, 0} where

δi1 < δi2 < . . . < δi|C|
. W 0

C;i and W 1
C;i are defined as

W 1
C;i = max

si∈Pa(i):IC(si)=1
WC;i(si), (9)

W 0
C;i = max

si∈Pa(i):IC(si)=0
WC;i(si). (10)

Alternative method is subgradient steps given as

λC ← λC + ǫ if
∑

i∈C

IC(ŝi) = 0, (11)

λC ← max{λC − ǫ, 0} if
∑

i∈C

IC(ŝi) > 1. (12)

where si is maximizing WC;i(si) + λCIC(si). In updating

λ (λC vector), step size ǫ is set to 1
|λ|

∑|λ|
i=1 |λ

old
Ci
− λnew

Ci
|.

|λ| is size of λ. The step size decreases to zero and λ can

be converged.

4) Decoding: The goal of decoding is to order the nodes

(variables) maximizing primal value. To this end, given the

clusters and dual variables in iteration, we can calculate dual

score using simple dual form.

Wi(si;λ) = Wi(si) +
∑

C:i∈C

λCIC(si). (13)

We set P1 = 0, and calculate it for t = 1. . .n.

it = argmin
i∈Pt

Ri, Pt+1 = Pt∪{it} (14)

Ri = max
si∈Pa(i)

Wi(si;λ)− max
si∈Pa(i),si⊆Pt

Wi(si;λ) (15)
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Fig. 1. Linear programming relaxation and Branch and Bound for synthetic network and data

Basically si in dual is the best selection of parent set to

maximize score and satisfy all constraints for added all

clusters at that time. Ri measure the difference of score

(so-called regret) between the dual score without additional

condition and the score with the exclusion of nodes that are

ordered already and added into P .

5) Add Cluster: The goal of this step is to find more

likely cycles in the dual. δij for each directed edge Eji is

calculated as follow:

δji = max
si∈Pa(i):j∈si

[Wi(si) +
∑

C:i∈C

λCIC(si)]

− max
si∈Pa(i):j /∈si

[Wi(si) +
∑

C:i∈C

λCIC(si)] (16)

where δji indicates whether or not Eji is supported for

current dual score. So, we add the cycle that maximize the

minimum value of δji along the cycle. To this end, first

initialize ∆ji = δji and pji = i. ∆ji is the minimum value

of δ along the path from j to i and pji of pointer matrix

is the first node along the path from j to i. Secondly, for

k = 1. . .n, i = 1...n, j = 1...n, if min{∆i→k,∆k→j} >
∆i→j then ∆i→j = min{∆i→k,∆k→j}, pi→j = pi→k After

initialization, the minimum δkl (∆kl) of every possible pairs

can be retrieved by tracing the pointers from k to l. Finally,

the cycle that has the largest ∆ in all cycles is added as new

cluster.

D. Branch and Bound

Since dual and primal value may not be converged, we use

Branch and Bound to find the optimal(maximum) decoded

value. First, the parent set of given node i is divided into two

groups as branches. A group are overlapped with a given

cluster C that is associated with the node i, and another

group are not overlapped with C. Then, we update all λC

for two branches separately and calculate the dual and primal

value with updated λ. Once dual is equal to primal, it is the

optimal value. For next expansion, we choose the branch

which has higher dual value.

E. Prior Knowledge

For more reliable network inference, we use PPI data as

a prior knowledge to estimate an edge of parent set. Con-

cretely, once the edges between node i and selected parent

set include more PPI, the scoring function gives higher score

to the parent set. As MDL is Maximum Likelihood based

scoring function, we manipulate the number of instance set

of variable when parent set is given. If {i, v∈Pa(i)} ∈ PPI ,

Score(G : D) =

n
∑

i

qi
∑

j

IST
new · log(ISnew ·

1
∑ri

k ISnewk

)

(17)

where instances set IS = [Nij1, . . ., Nijri ]
T , ISnew =

ISold−{ISold−min(ISold)}·α ·β, and α is the normalized

confidence level of prior knowledge of the edge. α =
1

|Pa(i)|

∑

j∈Pa(i) Rji where R is confidence level matrix and

|Pa(i)| is the size of parent set of node i. β is the parameter

that indicates how much reflect the prior knowledge in the

scoring function.

III. EXPERIMENTS

A. Synthetic Data

Before we apply the method to RPPM data, the method

is tested first in three well known network structures,

ASIA, CAR2, and ALARM. These networks are frequently

used to evaluate the performance of learning Bayesian

network method in many literatures. They consist of 8,

18, and 37 nodes and 8, 20, and 46 edges respectively.

The dataset of each network can be created by TETRAD4

(http://www.phil.cmu.edu/projects/tetrad/), and each data set

has 1,000 samples. In Fig. 1 as a result, the optimal structure

of ASIA can be found with only 8 clusters without Branch

and Bound searching step in less than one second. For CAR2,

it took around 1 minute to find maximum primal value with

56 clusters. In ALARM network, the dual and primal is

converged in about 30 minutes with 207 clusters and 74

branch expansions.

B. RPPM Data

We apply the proposed method to lung cancer RPPM

data which has 55 antibodies and 75 different lung cancer

patient’s samples with associated PPI data. In the experiment,

each antibody is a random variable (node) in a network, and

the expression level of each antibody is discretized into 3

states by K-means clustering as an unsupervised discretiza-

tion. For PPI information as prior knowledge, STRING PPI

database (http://string-db.org) is adopted as it provides the
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Fig. 2. Inferred networks for lung cancer RPPM data and PPI data (hierarchic layout in Cytoscape)

experimental based confidence level of each interaction as

well as the list of protein interactions. This confidence level

that is normalized into 0 to 1 is based on only experimental

evidence excluding the evidence in curated database. Hence,

this confidence level value for each edge of two proteins is α
in scoring function. Figure 2 shows the inferred network as

a result. The colored label of nodes indicates the lung cancer

related proteins in annotated pathway in KEGG database

(http://www.genome.jp/kegg/). Red nodes are the proteins of

small cell lung cancer pathway, blue means the proteins in

non-small cell lung cancer, and green refers the proteins in

both pathways. These lung cancer related proteins tend to

be connected to each others in the result. The connection

between an protein and its phosphorylation is caused by

their high dependency rather than actual interaction. An edge

may not indicate only the direct but indirect interaction along

the pathway. Figure 2-(a) is the estimated network without

prior knowledge. Only 27 nodes are appeared with 24 edges.

Figure 2-(b) is the inferred network with prior knowledge.

β is set to 0.1 and 17 red edges indicate the common edges

to Fig. 2-(a). 49 additional new edges are estimated after

the integration of 80 PPI and RPPM data. We note IGF-

1R (Insulin growth factor type 1 receptor) observing that

all three IGF-1R antibodies (yellow nodes) place near lung

cancer related proteins in both networks. Recently IGF-1R

has attracted attention in cancer therapy research considering

that higher levels of IGF can increase the risk of lung cancer.

It means that IGF-1R inhibitor may be used potentially as

clinical therapy. Through our inferred network, we could also

confirm the possibility of potential role of IGF-1R for lung

cancer in the result.

IV. CONCLUSIONS AND FUTURE WORKS

In order to discover unknown lung cancer pathways, we

perform learning Bayesian network with RPPM data and

propose an integration method with a modified scoring

function so that we can predict more reliable networks with

PPI data as prior knowledge. For the future work, since not

all antibodies may be involved in the actual pathway, we

could select the partial paths (e.g. IGF-1R) from the result

and validate them by biological experiments.
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