

An Evolutionary Optimization Strategy Using Graphics Processing
Units to Efficiently Investigate Gene-Gene Interactions in Genetic

Association Studies
Joel B. Fontanarosa and Yang Dai, Member, IEEE

Abstract— The analysis of gene-gene interactions related
to common complex human diseases is complicated by the
increasing scale of genetic association analysis. Concurrent
with the advances in genetic technology that led to these
large data sets, improvements have been made in parallel
computing with graphics processing units (GPUs). The data-
intensive nature of genetic association analysis makes this
problem particularly suitable for improved computation
with the powerful computing resources available in GPUs.
In this study, we present a GPU-accelerated discrete
optimization strategy to improve the computational
efficiency of multi-locus association analysis. We
implemented an adaptive evolutionary algorithm that takes
advantage of linkage disequilibrium to reduce the need for
exhaustive search for combinations of genetic markers. The
proposed GPU algorithm was shown to have improved
efficiency and equivalent power relative to the CPU version.

I. INTRODUCTION
IGH density genetic association studies have been

conducted for dozens of common complex diseases,
providing geneticists with a wealth of information about
the underlying genotypic features in a variety of
populations. These studies have led to the discovery of
numerous genetic variants shown to be reliably associated
with specific disease phenotypes. However, as
researchers seek to better understand genetic diseases by
using analyses of gene-gene interactions, by collecting
denser genetic association data, or by conducting meta-
analyses of large combined data sets, the scale and
complexity of the computations involved in the analysis
increase dramatically [1, 2].

To address this growing computational burden, we
present a parallel evolutionary optimization strategy that
uses local linkage disequilibrium structure and graphics
computing units (GPUs) to improve the power to search
for gene-gene interactions. Several research groups have
presented impressive results using GPUs to improve the
computational speed of analyses for minimal cost [3-5].
These methods have significantly reduced the amount of
time required to analyze interactions in large genetic
association studies. Our parallel algorithm expands on the

recent papers describing GPU-accelerated gene-gene
interaction analysis to take advantage of the previously
demonstrated improvement in algorithmic performance in
a powerful evolutionary optimization framework [6]. We
demonstrate the computational speed of our method using
an exhaustive analysis of a moderately sized simulation
data set, and show that the power of our GPU-accelerated
implementation to detect causal interactions is equivalent
to that of our previously published method [6].

Manuscript submitted April 15, 2011.
JF and YD are with the Bioinformatics Program in the Department of

Bioengineering at The University of Illinois at Chicago, Chicago, IL
60607 USA. (Corresponding author: JF, phone: 312-413-0191; e-mail:
jfonta3@uic.edu).

II. METHODS

A. Proposed algorithm and GPU implementation
In our previous work, we proposed a block-based

evolutionary optimization procedure [6] for investigating
gene-gene interactions in genome-wide case-control
studies. Using linkage information to divide a genetic
association study into discrete, highly correlated blocks
can improve the power and computational efficiency of a
search for gene-gene interactions. A population, i.e., a set
of candidate solutions, defined as the combinations of k-
blocks of genotypes, is randomly built up and then is
improved iteratively with respect to some predefined
fitness function (e.g. χ2 statistic associated with a k-block
genotype combination). The solutions are modified by
introducing random new combinations (immigrants), by
modifying part of an existing combination (mutations), or
by combining solutions within the set (recombination),
and the solutions with the highest fitness are selected. The
procedure continues iteratively until a stable set of gene-
gene combinations with the best fitness measures results.

Our implementation used this general optimization
procedure to determine the linkage disequilibrium block
combinations with the best fitness. We define the fitness
measure for each combination of blocks Bs1, Bs2… Bsk as
described previously [6]. Let S be the set of all possible
k-SNP genotype combinations with exactly one SNP
from each linkage block. The genotypes in each Bsm (1 ≤
m ≤ k) all have 3 possible genotypes, and the observed
frequency counts for the 3k possible genotypes for each
genotype combination are tallied in a 2 × 3k contingency
table Gs of case and control genotype counts. For each s
in S with contingency table Gs, we consider the χ2 statistic
with 3k – 1 degrees of freedom. The fitness of each block
combination is then determined as:

H

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 5547

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011

1
2
3

max{ () : }k sG s Sϕ χ −= ∈ . The maximum search depth

of S in each iteration is set as a parameter. When k is
small (≤ 3), a deep search for the optimal φ from the set S
is used. For larger k, φ is determined by random
sampling of S.

The main computational burden in our evolutionary
optimization algorithm is the calculation of genotype
frequency counts for k-SNP combinations. Tallying the
genotype counts for a set of k-SNP combinations in a
large population of individuals can be computed very
efficiently on a GPU using a modified parallel reduction
algorithm (a toy example for k=2 for 4 subjects is shown
in Fig. 1) [4, 7]. We used the NVIDIA Compute Unified
Device Architecture (CUDA) for our GPU
implementation. The CUDA programming model is a
single-instruction, multiple-data platform that executes
functions using parallel threads within units of data
grouped into GPU blocks. Multiple GPU blocks can then
be run in parallel using the GPU multiprocessors. Our
implementation uses two main memory spaces on the
GPU: (1) the larger (and slower) global memory for
genotype storage, and (2) the smaller (and faster) shared
memory for tallying frequency counts. Global memory is
the largest memory space on the GPU, can be accessed by
any GPU block, and is the only data directly accessible
from the CPU. By contrast, shared memory is much
smaller, and is only accessible by threads within a single
GPU block.

Fig. 1. Overview of the parallel reduction approach. In this example, we show population k-SNP (k=2)
combinations P1 through PX split up into X GPU blocks. We show an example parallel reduction for P1 with a
two-SNP combination for 4 subjects in the case group. These genotype frequency counts are copied from the
GPU global memory to shared memory to rapidly tally the frequency counts in parallel for all X GPU blocks. The
frequency counts are then copied back to the GPU global memory, where they can be used to calculate the fitness
measure before being copied to the CPU.

As described in previous implementations of GPU
gene-gene interaction analysis, a common way to achieve
optimal performance is to structure the data such that the
load is balanced across the resources of the GPU, with the
majority of data-operations
occurring in the fastest
performing shared memory
cache [4, 5, 7]. Genotypes
are copied onto the GPU in
global memory. For a study
with N patients, each k-SNP
combination is then copied
into a N*3k element vector in
shared memory and reduced
to a list of frequency counts
for each of the possible 3k
genotypes (Fig. 1). If a
vector of N*3k elements does
not fit within a single GPU
block, the frequency counts
are split into multiple GPU
blocks, and the frequencies
for all N patients are
combined in global memory
after the reduction. To
maximally take advantage of
the GPU resources and to

minimize overhead due to data transfer between the GPU
and the CPU, we define a parameter X as the number of
k-SNP combinations calculated in parallel on the GPU
during each iteration. The value of X depends on the
specific GPU being used, and is based on the amount of
GPU memory, the number of GPU multiprocessors, the
maximum number of GPU blocks that may be run
concurrently on the GPU, and the number of blocks used
per frequency count (based on N and the amount of GPU
shared memory).

The evolutionary population size (P) that was
determined to be the best for exploring genetic
interactions in our previous study is much smaller than X.
To adapt our evolutionary optimization framework to a
parallel version that maximally takes advantage of the
GPU resources while maintaining power to detect causal
k-SNP interactions, we used a parallel islands approach
(Fig. 2). In this method, we initialize a set of F separate
populations (“islands”), each of which has P solutions,
such that there are a total of X k-SNP combinations
across all islands. Each island population is then
modified using immigration, mutation, and recombination
for a finite number of iterations. The probabilities for the
moves in the evolutionary algorithm were defined as
follows:
1) Immigration: p=0.6, randomly select a new block

combination
2) Mutation: p=0.2

a) Substitute one of the blocks with a random block
b) Modify one of the two blocks by randomly

choosing a nearby block
3) Recombination: p=0.2, substitute one of the blocks

5548

Fig. 2. Schematic comparing the CPU Evolutionary Algorithm with the
GPU Parallel Islands implementation. In our CPU procedure, an initial
“population” of combinations is iteratively modified using the
immigration, mutation, and recombination moves described in the text.
This process continues until a maximum number of iterations is reached
or a convergence criterion is satisfied. In the GPU implementation, we
initialize a set of F “island” populations. Each island is a population of
combinations that is independently modified using the evolutionary
moves. After a set number of iterations, the combinations across all
islands are shuffled and the process repeats until the convergence criteria
is satisfied.

with a block from another randomly selected solution
in the population

The size of the population of solutions, P, is a
parameter that was set at 100. We defined two
termination criteria for our algorithm: (1) a limit on the
number of total iterations (default = M/10, where M is the
number of SNPs) or (2) a limit on the number of
iterations that may pass without any change in the set of
fittest solutions. To ensure a proper comparison, the
evolutionary moves, the move probabilities, and the
definition of φ were the identical in the CPU and GPU
implementations.

 In the GPU implementation, the island populations are
independently optimized for a set number of iterations
until the fitness of the solutions in each island is

improved. The combinations across all islands are then
shuffled together and regrouped into F populations, and
the procedure is repeated until a stable set of gene-gene
combinations results.

The number of independent islands (F) is a parameter
that was defined as a function of the number of GPUs, X,
and the number of fitness measures to calculate in each
population. This approach allows our model to be
adjusted to fit the resources of the specific GPU being
used in order to maximize performance. We determined
the performance of our code using a computer with an i5
Quad-core 2.66GHz processor, 8GB of RAM and a
NVIDIA GTX 470 GPU running CUDA 3.2 on Ubuntu
Linux 10.10. GPU code was implemented and tested in
CUDA or C for best performance and then wrapped with
Python 2.6 using the PyCUDA library (2011.1) [8].

B. Simulation model and performance analysis
To establish equivalence in statistical power of our

GPU implementation with that of the CPU
implementation of our evolutionary optimization strategy
for moderately sized studies, simulation models were
built as described previously [6, 9] using a multiplicative
two-locus disease model. In each simulation data set of
5000 SNPs, the disease prevalence was fixed at 0.01, the
genotypic effect size was set at a relative risk of ω=1.25,
the Minor Allele Frequency (MAF) was set at 0.15 or
0.30, and the population was set to 1000, 2000, and 5000.
The disease model included two loci: each with a
marginal effect and an effect size of ω*ω for any
interaction between disease alleles at the two causal loci.

Because the running time of our optimization
procedure is dependent on several parameters and random
chance, we used exhaustive analyses over smaller sets of
SNPs on random simulation data (no simulated effect) to
measure the performance of our code: N = (2000, 5000,
10000), M = (1000, 2000, 5000), where N is the number
of samples and M the number of SNPs.

Fig. 4. Comparison of the statistical power of the GPU and CPU
implementations to detect causal genetic markers. Power is reported as
the proportion of times the causal gene-gene interaction was found in 50
simulations for M=5000,and N=(1000,2000,5000).

Fig. 3. Comparison of GPU and CPU running times in seconds for
exhaustive search on data sets of varying size. N is the number of
subjects and M is the number of SNPs.

5549

The population and linkage disequilibrium features in
our simulation data were based on HapMap CEU phased
data (CEPH samples with ancestry from Northern and
Western Europe) for autosomal SNPs corresponding to
the Illumina HumanHap 550K SNP array [9, 10].
Linkage structure was measured and included in our
models as described previously [6].

III. RESULTS
Since the running time of our optimization procedure

may be variable, we elected to use a limited exhaustive
search to assess the comparative running time of our GPU
and CPU codes. The sample sizes N=(2000, 5000, and
10000) correspond roughly with a moderately sized
GWAS, a large GWAS [11], and a combined analysis of
more than one GWAS. As shown in Fig. 3, the running
times are comparable for small studies, but the
computational benefit of the parallel implementation
becomes readily evident for exhaustive analyses of even a
limited set of SNPs.

It was important to establish that the GPU and CPU
implementations of our optimization approach had
equivalent power to detect a simulated gene-gene
interaction. We defined power as the proportion of times
out of 50 replicate simulation data sets that the causal
interaction was detected. As shown in Fig. 4, the GPU
and CPU versions of our optimization algorithm have
nearly identical power.

IV. DISCUSSION
 As shown in previous studies [3-5], parallel GPU
computing techniques can substantially improve the
performance of genetic analysis tools. Our previously
published block-based evolutionary optimization strategy
was designed to improve the power and efficiency of
gene-gene interaction detection by taking advantage of
local linkage disequilibrium structure. The parallel
implementation of our algorithm extends this approach so
that it can be more conveniently applied for exploratory
analysis of genome-scale data. We demonstrated that our
GPU method has equivalent statistical power using a
standard multiplicative two-locus disease model that
included marginal effects. As has been shown
previously, this power is expected to be higher for our
method when the sample size is large and when the causal
allele is more common [6, 12]. Any differences in power
between the two implementations (as shown in Fig. 4) are
due to random variations in our evolutionary algorithm or
a slightly increased search space of the GPU
implementation of the algorithm.

One limitation of our current software is that it will
only run on devices compatible with NVIDIA CUDA.
Forthcoming versions of our code will allow our software
to be run on hardware from other vendors by translating
the necessary GPU functions from CUDA to OpenCL

[13]. In our future research, we plan to expand the set of
genomic association analysis tools accelerated by our
parallel implementation, and we will also explore new
ways of further improving the performance of our code as
new hardware and techniques emerge.

REFERENCES
[1] H. J. Cordell, "Detecting gene-gene interactions that underlie

human diseases," Nat Rev Genet, vol. 10, pp. 392-404, Jun 2009.
[2] E. E. Eichler, et al., "Missing heritability and strategies for finding

the underlying causes of complex disease," Nat Rev Genet, vol. 11,
pp. 446-50, Jun 2010.

[3] X. Hu, et al., "SHEsisEpi, a GPU-enhanced genome-wide SNP-
SNP interaction scanning algorithm, efficiently reveals the risk
genetic epistasis in bipolar disorder," Cell Res, vol. 20, pp. 854-7,
Jul 2010.

[4] N. A. Sinnott-Armstrong, et al., "Accelerating epistasis analysis in
human genetics with consumer graphics hardware," BMC Res
Notes, vol. 2, p. 149, 2009.

[5] L. S. Yung, et al., "GBOOST : A GPU-based tool for detecting
gene-gene interactions in genome-wide case control studies,"
Bioinformatics, Mar 3 2011.

[6] J. Fontanarosa and Y. Dai, "A block-based evolutionary
optimization strategy to investigate gene-gene interactions in
genetic association studies," Proceeding of 2010 IEEE
International conference on Bioinformatics and Biomedicine
Workshop, pp. 330-335, 2010.

[7] M. Harris. (2009). Optimizing Parallel Reduction in CUDA.
Available: developer.download.nvidia.com

[8] A. Klöckner, et al., "PyCUDA and PyOpenCL: A Scripting-Based
Approach to GPU Run-Time Code Generation," arXiv, 2011.

[9] C. Li and M. Li, "GWAsimulator: a rapid whole-genome
simulation program," Bioinformatics, vol. 24, pp. 140-2, Jan 1
2008.

[10] K. A. Frazer, et al., "A second generation human haplotype map of
over 3.1 million SNPs," Nature, vol. 449, pp. 851-61, Oct 18 2007.

[11] "Genome-wide association study of 14,000 cases of seven common
diseases and 3,000 shared controls," Nature, vol. 447, pp. 661-78,
Jun 7 2007.

[12] J. Marchini, et al., "Genome-wide strategies for detecting multiple
loci that influence complex diseases," Nat Genet, vol. 37, pp. 413-
7, Apr 2005.

[13] Khronos. (2011). OpenCL - The open standard for parallel
programming of heterogeneous systems. Available:
http://www.khronos.org/opencl/

5550

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

