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Abstract— The analysis of gene-gene interactions related 
to common complex human diseases is complicated by the 
increasing scale of genetic association analysis.  Concurrent 
with the advances in genetic technology that led to these 
large data sets, improvements have been made in parallel 
computing with graphics processing units (GPUs). The data-
intensive nature of genetic association analysis makes this 
problem particularly suitable for improved computation 
with the powerful computing resources available in GPUs.  
In this study, we present a GPU-accelerated discrete 
optimization strategy to improve the computational 
efficiency of multi-locus association analysis. We 
implemented an adaptive evolutionary algorithm that takes 
advantage of linkage disequilibrium to reduce the need for 
exhaustive search for combinations of genetic markers.  The 
proposed GPU algorithm was shown to have improved 
efficiency and equivalent power relative to the CPU version.  

I. INTRODUCTION 
IGH density genetic association studies have been 

conducted for dozens of common complex diseases, 
providing geneticists with a wealth of information about 
the underlying genotypic features in a variety of 
populations.  These studies have led to the discovery of 
numerous genetic variants shown to be reliably associated 
with specific disease phenotypes.  However, as 
researchers seek to better understand genetic diseases by 
using analyses of gene-gene interactions, by collecting 
denser genetic association data, or by conducting meta-
analyses of large combined data sets, the scale and 
complexity of the computations involved in the analysis 
increase dramatically [1, 2].   

To address this growing computational burden, we 
present a parallel evolutionary optimization strategy that 
uses local linkage disequilibrium structure and graphics 
computing units (GPUs) to improve the power to search 
for gene-gene interactions.  Several research groups have 
presented impressive results using GPUs to improve the 
computational speed of analyses for minimal cost [3-5].  
These methods have significantly reduced the amount of 
time required to analyze interactions in large genetic 
association studies. Our parallel algorithm expands on the 

recent papers describing GPU-accelerated gene-gene 
interaction analysis to take advantage of the previously 
demonstrated improvement in algorithmic performance in 
a powerful evolutionary optimization framework [6].  We 
demonstrate the computational speed of our method using 
an exhaustive analysis of a moderately sized simulation 
data set, and show that the power of our GPU-accelerated 
implementation to detect causal interactions is equivalent 
to that of our previously published method [6].  
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II. METHODS 

A. Proposed algorithm and GPU implementation 
In our previous work, we proposed a block-based 

evolutionary optimization procedure [6] for investigating 
gene-gene interactions in genome-wide case-control 
studies.   Using linkage information to divide a genetic 
association study into discrete, highly correlated blocks 
can improve the power and computational efficiency of a 
search for gene-gene interactions.  A population, i.e., a set 
of candidate solutions, defined as the combinations of k-
blocks of genotypes, is randomly built up and then is 
improved iteratively with respect to some predefined 
fitness function (e.g. χ2 statistic associated with a k-block 
genotype combination).  The solutions are modified by 
introducing random new combinations (immigrants), by 
modifying part of an existing combination (mutations), or 
by combining solutions within the set (recombination), 
and the solutions with the highest fitness are selected. The 
procedure continues iteratively until a stable set of gene-
gene combinations with the best fitness measures results. 

Our implementation used this general optimization 
procedure to determine the linkage disequilibrium block 
combinations with the best fitness.  We define the fitness 
measure for each combination of blocks Bs1, Bs2… Bsk as 
described previously [6].  Let S be the set of all possible 
k-SNP genotype combinations with exactly one SNP 
from each linkage block.  The genotypes in each Bsm (1 ≤ 
m ≤ k) all have 3 possible genotypes, and the observed 
frequency counts for the 3k possible genotypes for each 
genotype combination are tallied in a 2 × 3k contingency 
table Gs of case and control genotype counts.  For each s 
in S with contingency table Gs, we consider the χ2 statistic 
with 3k – 1 degrees of freedom. The fitness of each block 
combination is then determined as:  
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max{ ( ) : }k sG s Sϕ χ −= ∈ . The maximum search depth 

of S in each iteration is set as a parameter.  When k is 
small (≤ 3), a deep search for the optimal φ from the set S 
is used.  For larger k, φ is determined by random 
sampling of S.   

The main computational burden in our evolutionary 
optimization algorithm is the calculation of genotype 
frequency counts for k-SNP combinations.  Tallying the 
genotype counts for a set of k-SNP combinations in a 
large population of individuals can be computed very 
efficiently on a GPU using a modified parallel reduction 
algorithm (a toy example for k=2 for 4 subjects is shown 
in Fig. 1) [4, 7].  We used the NVIDIA Compute Unified 
Device Architecture (CUDA) for our GPU 
implementation.  The CUDA programming model is a 
single-instruction, multiple-data platform that executes 
functions using parallel threads within units of data 
grouped into GPU blocks.  Multiple GPU blocks can then 
be run in parallel using the GPU multiprocessors. Our 
implementation uses two main memory spaces on the 
GPU: (1) the larger (and slower) global memory for 
genotype storage, and (2) the smaller (and faster) shared 
memory for tallying frequency counts.  Global memory is 
the largest memory space on the GPU, can be accessed by 
any GPU block, and is the only data directly accessible 
from the CPU.  By contrast, shared memory is much 
smaller, and is only accessible by threads within a single 
GPU block.  

Fig. 1.  Overview of the parallel reduction approach.  In this example, we show population k-SNP (k=2) 
combinations P1 through PX split up into X GPU blocks.  We show an example parallel reduction for P1 with a 
two-SNP combination for 4 subjects in the case group.  These genotype frequency counts are copied from the 
GPU global memory to shared memory to rapidly tally the frequency counts in parallel for all X GPU blocks.  The 
frequency counts are then copied back to the GPU global memory, where they can be used to calculate the fitness 
measure before being copied to the CPU.  

As described in previous implementations of GPU 
gene-gene interaction analysis, a common way to achieve 
optimal performance is to structure the data such that the 
load is balanced across the resources of the GPU, with the 
majority of data-operations 
occurring in the fastest 
performing shared memory 
cache [4, 5, 7].  Genotypes 
are copied onto the GPU in 
global memory.  For a study 
with N patients, each k-SNP 
combination is then copied 
into a N*3k element vector in 
shared memory and reduced 
to a list of frequency counts 
for each of the possible 3k 
genotypes (Fig. 1).  If a 
vector of N*3k elements does 
not fit within a single GPU 
block, the frequency counts 
are split into multiple GPU 
blocks, and the frequencies 
for all N patients are 
combined in global memory 
after the reduction.  To 
maximally take advantage of 
the GPU resources and to 

minimize overhead due to data transfer between the GPU 
and the CPU, we define a parameter X as the number of 
k-SNP combinations calculated in parallel on the GPU 
during each iteration.  The value of X depends on the 
specific GPU being used, and is based on the amount of 
GPU memory, the number of GPU multiprocessors, the 
maximum number of GPU blocks that may be run 
concurrently on the GPU, and the number of blocks used 
per frequency count (based on N and the amount of GPU 
shared memory).   

The evolutionary population size (P) that was 
determined to be the best for exploring genetic 
interactions in our previous study is much smaller than X.  
To adapt our evolutionary optimization framework to a 
parallel version that maximally takes advantage of the 
GPU resources while maintaining power to detect causal 
k-SNP interactions, we used a parallel islands approach 
(Fig. 2).  In this method, we initialize a set of F separate 
populations (“islands”), each of which has P solutions, 
such that there are a total of X k-SNP combinations 
across all islands.  Each island population is then 
modified using immigration, mutation, and recombination 
for a finite number of iterations.  The probabilities for the 
moves in the evolutionary algorithm were defined as 
follows: 
1) Immigration: p=0.6, randomly select a new block 

combination 
2) Mutation: p=0.2 

a) Substitute one of the blocks with a random block 
b) Modify one of the two blocks by randomly 

choosing a nearby block 
3) Recombination: p=0.2, substitute one of the blocks 
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Fig. 2.  Schematic comparing the CPU Evolutionary Algorithm with the 
GPU Parallel Islands implementation.  In our CPU procedure, an initial 
“population” of combinations is iteratively modified using the 
immigration, mutation, and recombination moves described in the text.  
This process continues until a maximum number of iterations is reached 
or a convergence criterion is satisfied.  In the GPU implementation, we 
initialize a set of F “island” populations.  Each island is a population of 
combinations that is independently modified using the evolutionary 
moves.  After a set number of iterations, the combinations across all 
islands are shuffled and the process repeats until the convergence criteria 
is satisfied.  

with a block from another randomly selected solution 
in the population 

The size of the population of solutions, P, is a 
parameter that was set at 100.  We defined two 
termination criteria for our algorithm: (1) a limit on the 
number of total iterations (default = M/10, where M is the 
number of SNPs) or (2) a limit on the number of 
iterations that may pass without any change in the set of 
fittest solutions. To ensure a proper comparison, the 
evolutionary moves, the move probabilities, and the 
definition of φ were the identical in the CPU and GPU 
implementations. 

 In the GPU implementation, the island populations are 
independently optimized for a set number of iterations 
until the fitness of the solutions in each island is 

improved.  The combinations across all islands are then 
shuffled together and regrouped into F populations, and 
the procedure is repeated until a stable set of gene-gene 
combinations results.   

The number of independent islands (F) is a parameter 
that was defined as a function of the number of GPUs, X, 
and the number of fitness measures to calculate in each 
population.  This approach allows our model to be 
adjusted to fit the resources of the specific GPU being 
used in order to maximize performance.  We determined 
the performance of our code using a computer with an i5 
Quad-core 2.66GHz processor, 8GB of RAM and a 
NVIDIA GTX 470 GPU running CUDA 3.2 on Ubuntu 
Linux 10.10.  GPU code was implemented and tested in 
CUDA or C for best performance and then wrapped with 
Python 2.6 using the PyCUDA library (2011.1) [8].  

B. Simulation model and performance analysis 
To establish equivalence in statistical power of our 

GPU implementation with that of the CPU 
implementation of our evolutionary optimization strategy 
for moderately sized studies, simulation models were 
built as described previously [6, 9] using a multiplicative 
two-locus disease model.  In each simulation data set of 
5000 SNPs, the disease prevalence was fixed at 0.01, the 
genotypic effect size was set at a relative risk of ω=1.25, 
the Minor Allele Frequency (MAF) was set at 0.15 or 
0.30, and the population was set to 1000, 2000, and 5000.  
The disease model included two loci: each with a 
marginal effect and an effect size of ω*ω for any 
interaction between disease alleles at the two causal loci.   

Because the running time of our optimization 
procedure is dependent on several parameters and random 
chance, we used exhaustive analyses over smaller sets of 
SNPs on random simulation data (no simulated effect) to 
measure the performance of our code: N = (2000, 5000, 
10000), M = (1000, 2000, 5000), where N is the number 
of samples and M the number of SNPs. 

 
 
Fig. 4.  Comparison of the statistical power of the GPU and CPU 
implementations to detect causal genetic markers.  Power is reported as 
the proportion of times the causal gene-gene interaction was found in 50 
simulations for M=5000,and N=(1000,2000,5000). 

 
 
Fig. 3. Comparison of GPU and CPU running times in seconds for 
exhaustive search on data sets of varying size.  N is the number of 
subjects and M is the number of SNPs. 
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The population and linkage disequilibrium features in 
our simulation data were based on HapMap CEU phased 
data (CEPH samples with ancestry from Northern and 
Western Europe) for autosomal SNPs corresponding to 
the Illumina HumanHap 550K SNP array [9, 10].  
Linkage structure was measured and included in our 
models as described previously [6].  

III. RESULTS 
Since the running time of our optimization procedure 

may be variable, we elected to use a limited exhaustive 
search to assess the comparative running time of our GPU 
and CPU codes.  The sample sizes N=(2000, 5000, and 
10000) correspond roughly with a moderately sized 
GWAS, a large GWAS [11], and a combined analysis of 
more than one GWAS.  As shown in Fig. 3, the running 
times are comparable for small studies, but the 
computational benefit of the parallel implementation 
becomes readily evident for exhaustive analyses of even a 
limited set of SNPs.  

It was important to establish that the GPU and CPU 
implementations of our optimization approach had 
equivalent power to detect a simulated gene-gene 
interaction.  We defined power as the proportion of times 
out of 50 replicate simulation data sets that the causal 
interaction was detected. As shown in Fig. 4, the GPU 
and CPU versions of our optimization algorithm have 
nearly identical power.   

IV. DISCUSSION 
 As shown in previous studies [3-5], parallel GPU 
computing techniques can substantially improve the 
performance of genetic analysis tools.  Our previously 
published block-based evolutionary optimization strategy 
was designed to improve the power and efficiency of 
gene-gene interaction detection by taking advantage of 
local linkage disequilibrium structure. The parallel 
implementation of our algorithm extends this approach so 
that it can be more conveniently applied for exploratory 
analysis of genome-scale data.  We demonstrated that our 
GPU method has equivalent statistical power using a 
standard multiplicative two-locus disease model that 
included marginal effects.  As has been shown 
previously, this power is expected to be higher for our 
method when the sample size is large and when the causal 
allele is more common [6, 12].  Any differences in power 
between the two implementations (as shown in Fig. 4) are 
due to random variations in our evolutionary algorithm or 
a slightly increased search space of the GPU 
implementation of the algorithm.  

One limitation of our current software is that it will 
only run on devices compatible with NVIDIA CUDA.  
Forthcoming versions of our code will allow our software 
to be run on hardware from other vendors by translating 
the necessary GPU functions from CUDA to OpenCL 

[13].  In our future research, we plan to expand the set of 
genomic association analysis tools accelerated by our 
parallel implementation, and we will also explore new 
ways of further improving the performance of our code as 
new hardware and techniques emerge.  
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