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Abstract— Breast cancer is a complex disease with hetero-
geneity between patients regarding prognosis and treatment
response. Recent progress in advanced molecular biology tech-
niques and the development of efficient methods for database
mining lead to the discovery of promising novel biomarkers
for prognosis and prediction of breast cancer. In this paper,
we applied three computational algorithms (RFE-LNW, Lasso
and FSMLP) to one microarray dataset for breast cancer
and compared the obtained gene signatures with a recently
described disease-agnostic tool, the Genotator. We identified a
panel of 152 genes as a potential prognostic signature and the
ERRFI1 gene as possible biomarker of breast cancer disease.

I. INTRODUCTION

Breast cancer, a leading cause of cancer death in women,
is characterized by its molecular and clinical heterogeneity.
Breast, cervical, endometrial and ovarian cancer contribute to
45% of total female malignancies and approximately 880000
cancer related deaths annually [1]. Our understanding of the
biology and molecular basis for this common disease, as well
as the factors that contribute to breast cancer risk, has greatly
increased over the past few decades. Markers such as estro-
gen receptor (ER), progesterone receptor (PR) and epidermal
growth factor receptor family member (ERBB2/HER2) are
used for prognostication and multiple gene profiling studies
have been conducted, searching for genomic measurements
with predictive power for breast cancer prognosis [2]–[4].
One challenge for bio-informatists is to tease out useful
information from massive data sets for further analysis.

II. COMPUTATIONAL METHODS

In this work we have used multiple machine learning and
statistical methods for the elimination of non informative
genes and the identification of possible biomarkers.

A. Support Vector Machines
Support vector machines [5] map input vectors to a higher

dimensional space where a maximal separating hyperplane
is constructed. Two parallel hyperplanes are constructed on
each side of the hyperplane that separates the data. The
separating hyperplane is the hyperplane that maximizes the
distance between the two parallel hyperplanes (see Fig. 1).
An assumption is made that the larger the margin or distance
between these parallel hyperplanes the better the generalisa-
tion error of the classifier will be.
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In cases where the data are not linearly separated, the
training vectors xi are mapped into a higher (maybe infinite)
dimensional space by the function ϕ. Then SVM finds a
linear separating hyperplane wwwTϕ(xxx) + b with the maximal
margin in this higher dimensional space by solving the
following optimization problem [6]

minwww,b,ξ 1
2www

Twww + C
∑N
i=1 ξi

subject to yi(wwwTϕ(xxx) + b) ≥ 1− ξi, i = 1, . . . , N
ξi ≥ 0, i = 1, . . . , N

The introduction of the “slack” variables ξi permits the
calculation of the soft margin in non-separable cases where
some misclassifications are inevitable while the positive C
is the penalty parameter of the error term. Furthermore, for
dealing with the higher dimensionality introduced by the ϕ
transformation, a kernel function K(xxxi,xxxj) = ϕ(xxxi)Tϕ(xxxj)
suffices to bypass the tranformation and solve the optimiza-
tion problem in the original, finite dimensional space.

B. RFE-LVM

The output of the linear and non-linear parts of a single
neuron (Fig. 2) in a neural network are given as [7]

u =
∑m
i=1 wigi

f(u) = 1
1+eu = y

f ′(u) = y(1− y)

where wi is the weight associated to gene gi. The error
function that is pursued for minimization is

E(www) =
1
2

n∑
j=1

(dj − yj)2 (1)

where n corresponds to the number of samples, dj represents
the desirable neuron output associated with sample j and
yj is the actual output produced by this neuron for the

Fig. 1. A separating hyperplane between two classes
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Fig. 2. A single linear neuron

given sample. Using the gradient descent method for the
minimization of Eq. (1), we update the weight wi associated
to gene gi as follows

wi ← wi−η
∂E(www)
∂wi

= wi+η
n∑
j=1

(dj−yj)yj(1−yj)gij (2)

The Recursive Feature Elimination based on Linear Neu-
ron Weights (RFE-LNW) algorithm [8] is similar to the RFE-
SVM [9] approach which uses a linear kernel to assess the
weights of the direction vector w which in turn is used as a
gene ranking criterion. It introduces a Fisher’s metric in the
above update equation:

wi ← wi+η
n∑
j=1

(dj−yj)yj(1−yj)gij
|gij − ḡi|

σ+(gi) + σ−(gi)
(3)

where ḡi is the mean expression of the gene gi, and σ+(gi),
σ−(gi) are the standard deviation of the expression of gi in
the positive and the negative class respectively.

C. LASSO

The LASSO technique (Least Absolute Shrinkage and
Selection Operator [10]) can be used in cases where we
expect a response variable to be determined by a linear
combination of a subset of potential covariates. It minimizes
the following problem

minβββ
∑m
k=1(yk − βββ · xxxk)2

subject to
∑n
i=1 |βi| ≤ t

The t is the parameter that performs the “shrinkage” of the
β parameters closer to zero and thus producing a sparse
model. In this sparse model covariates xi that are associated
with βi = 0 have been effectively eliminated doing some
automatic feature selection.

D. Feature Selection MLP

In this multilayer perceptron (MLP) network genes are
selected in a supervised way using “gate opening” [11]. The
gates are located as nodes in the input layer of the MLP
and implement parameterized functions that when given the
expression of a gene as input, either close, when evaluate to
0, or partially open, when return a value in the (0, 1] interval.
At the beginning of the learning all gates are almost closed
as if no gene is important in the classification task. During
the learning phase each input node computes the product
of the expression of a gene and the gate function value
as its output. This output is passed on to the next layers
of the network and the gate function produces high values

for marker genes and low values for non important ones.
The learning algorithm, called the Feature Selection MLP
(FSMLP), adapts the parameters of the gate functions and
the weights of the network so that genes that can reduce the
error faster are “opened” faster.

III. DATASET AND METHODOLOGY

A. Dataset

Our analysis was performed on the breast cancer dataset
from vant Veer et al. [12] which is divided into train and test
set. Primary gene expression data files of clinical samples as
well as information on the associated standardisation of the
data and system used can be found online and in the original
publication [12]. The train set consists of 78 sporadic lymph
node patients; 44 of them remained free of disease after the
initial diagnosis, and 34 developed distant metastasis within
five years. The test set comprises 19 lymph node negative
breast cancer patients. 7 patients remained metastasis free
for at least five years, whereas the other 12 developed distant
metastasis within five years.

B. Methodology

Based on the computational methods (RFE-LNW, Lasso
and FSMLP) described in the above section we obtain three
gene signatures (see supplementary information). In combi-
nation with these methods, we employ an SVM in order to
check the classification accuracy whenever we need it. As
classification accuracy we denote the correct classification
rate as calculated using SVM.

The first gene signature (190 genes) is the output of
the RFE-LNW algorithm. At each step of the RFE-LNW
we estimate the classification accuracy with SVM, keeping
the minimum number of genes with the best classification
accuracy (82-83%), which in our case is 190 genes. (Note
that SVM correct rate for the whole dataset is 78-79%).

The second gene signature is the outcome of the Lasso
algorithm; we fine-tuned the algorithm’s parameter t via
manual trials; with the right choice of parameter, a small
subset of the genes is selected - 82 in our case- which results
in good classification accuracy (circa 74%).

The third gene signature is derived from a combination of
RFE-LNW and FSMLP; one should note that other feature
selection techniques may be used as well. Using RFE-LNW
we keep 1500 genes (using 10-fold cross validation in the
training set). Those 1500 genes are fed into Multilayer
Perceptron Network with gate opening, which is described
in paragraph (II-D) above. Our Neural Network consists of
3 layers: the first layer contains 1500 nodes, the middle
(hidden) layer contains 150 nodes, and the output layer
comprises a single node. The Neural Network is trained using
the aforementioned training set. After the training process,
200 genes corresponding to the highest gate opening values
are kept (accuracy around 80-85%). Due to randomization,
we have to iterate through many realizations of the NN; from
those realizations, we select those genes that appear in 90%
of the times. Consequently, this third gene signature consists
of 152 genes.
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TABLE I
THE THREE GENE SIGNATURES

a/a Number of genes Method used Training set Accuracy

1 190 RFE-LNW 82-83%
2 82 Lasso 74%
3 152 RFE-LNW, FSMLP 80-85%

Table I summarizes these three signatures.

IV. BIOLOGICAL EVALUATION OF THE SIGNATURES

First, to illustrate their potential we compared these three
gene signatures with the Genotator, a disease-agnostic tool
for genetic annotation of disease [13]. Genotator is a soft-
ware tool, developed to facilitate multi-database searching
and to provide a more complete picture of advances in
genetic research of human diseases. Genotator generates a
comprehensive set of results for breast cancer disease and
for any disease by integrating gene and annotation data from
11 externally accessible and best-of-breed genetic resources.
More interestingly, the results from Genotator are ranked
using a scoring system that integrates bibliomic and genomic
data and provides a preliminary likelihood of strength of
association for use in future thesis testing [13].

Of note, in the publication of vant Veer et al. [12]
many cDNA sequences had no gene symbol, gene name
or information associated with them. Given this fact, we
have updated and examined ontology information for all
genes included in all three gene signatures and their encoded
proteins to examine their significance in Genotator database.
35.79%, 46.34% and 32.9% of genes from the first, second
and third gene signature respectively had no yet gene names
and could not associated with any information (see supple-
mentary information). Second, we address a comparison of
the three gene signatures to identify the common genes. Here,
we report the findings of our analyses.

A. Results - Discussion

An important result to come from our analyses ad-
dresses Genotator specialization. For Breast Cancer, Genota-
tor database yielded 29 genes (23.2%) from the first gene
signature (125 known genes in 190 gene set), 12 genes
(27.27%) from the second gene signature (44 known genes in
82 gene set) and 39 (38.24%) from the third gene signature
(102 known genes in 152 gene set), suggesting that their
inclusion within the Genotator workflow provided new, and
potentially valuable information about the genes involved in
breast cancer disease (see supplementary information). In
view of the above, we focus on the third signature. Finally,
we also cannot rule out the possibilities that the first and
second gene signatures may have additional characteristics
that differ from those of the more promising third gene
signature or that applying the same method to a larger dataset
may result in different signatures. We argue that the data
produced so far may be preliminary to launch large-scale
study.

We linked the 102 known gene products (third signature)
to their Biological Process Gene Ontology (GO) annotations,
a procedure relying upon a controlled vocabulary for describ-
ing proteins with respect to their biological processes [14].
All biological processes identified through this procedure
were mapped to the corresponding proteins. As shown in
Fig. 3, comparison appears to give clearer insights into this
gene signature suggesting at least five principal processes;
metabolic processes, response to stimulus, signal transduc-
tion, gene expression, and protein modification processes,
each associated with breast cancer pathology.

Comparison analysis on the three gene signatures identi-
fied 19 common genes between RFE and LASSO, 5 common
genes between RFE and MLP, and 5 common genes between
MLP and LASSO. Interestingly, a single gene, the ERRFI1
gene is a particularly distinct marker among all three gene
signatures. As a meta-query engine, Genotator has provided
that the ERRFI1 gene is associated with breast cancer.
Therefore, we focused our attention on the ERFFI1.

ERBB receptor feedback inhibitor 1 or mitogen-inducible
gene 6 protein (ERRFI1 or MIG-6 also known as RALT or
Gene 33) is a multiadaptor protein thought to be involved in
the regulation of receptor tyrosine kinase (RTK) and stress
signalling [15].

Epidermal growth factor receptor (EGFR) is a membrane
tyrosine kinase that is implicated in the regulation of a
wide variety of biological processes [16]. Members of
the epidermal growth factor receptor family (EGFR/ERBB1,
ERBB2/HER2, ERBB3/HER3 and ERBB4/HER4) are key
targets for inhibition in cancer therapy. The cytoplasmic pro-
tein ERRFI1 interacts with and inhibits the kinase domains
of EGFR and ERBB2, which are critical for the activation
by the formation of an asymmetric dimmer [17]. Recent
data, using gene expression analysis showed that ERRFI1
expression is correlated with the phosphorylated active state
of EGFR and that ERRFI1 expression is associated with
basal EGFR kinase activity in the absence of ligand [18].

Animal studies demonstrate that ERRFI1 is a specific
negative regulator of EGFR signaling in skin morphogenesis,
and a novel tumor suppressor of Egfr-dependent carcino-
genesis [15], and also ERRFI1 is a crucial regulator of
pulmonary development and vascularization [19] and in the
tumorigenesis of endometrial cancer [20].

Duncan et al. [21] using a multifaceted genome-wide
analysis in glioblastomas, indicate that ERRFI1 is a potential
glioblastoma-targeted tumor suppressor gene and a key com-
ponent in the EGFR signaling pathway involved in glioblas-
toma development. Also, they demonstrate that restoring
ERRFI1 expression in an ERRFI1-deficient glioblastoma cell
line decreases glioblastoma cell migration.

In vitro study has demonstrated that the ERRFI1 gene
does not undergo mutational inactivation in breast cancer and
suggested a role for loss of ERRFI1 signalling in the patho-
genesis of ERBB2-amplified breast carcinomas [22], while
Xu et al. have shown that ERRFI1 gene promotes breast
cancer cell growth by an anti-apoptotic rather than a mito-
genic effect, possibly involving up-regulation of Poly(ADP-
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ribose) Polymerase (PARP-1) protein in multiple human
breast cancer cell lines [23]. Interestingly, in a previous
clinical study, using a tissue-wide expression profile analysis,
ERFFI1 was identified as a down-regulated gene in tumors
of breast cancer patients with a poor prognosis [24]. The
above studies strongly support the significance of ERRFI1
as a crucial regulator in intracellular signalling and give rise
to our notion that ERRFI1 could be a possible biomarker for
breast cancer disease.

V. CONCLUSIONS

The present study provides a combined analysis of three
computational algorithms with a disease-agnostic tool, the
Genotator for the identification of prognostic gene signature
for breast cancer disease and the selection of candidate
biomarkers.

In agreement with the analysis using the Genotator, there
appears to be an important role played by the third gene
signature and suggests that the third gene signature is a
potential prognostic signature and the ERRFI1 gene could
be a promising biomarker for breast cancer disease. Molec-
ular studies are necessary to delineate the role of ERRFI1
signaling in breast cancer.

1	  
1	  
1	  
1	  
1	  
1	  
1	  
1	  
1	  
1	  
2	  
2	  
2	  
2	  
2	  
3	  
3	  
3	  
4	  
4	  
4	  
4	  
4	  
4	  

6	  
8	  
8	  

10	  
10	  
11	  
11	  
12	  
13	  

20	  
24	  

27	  
29	  

36	  
38	  

0	   5	   10	   15	   20	   25	   30	   35	   40	  

cell	  morphogenesis	  
embryo	  development	  

	  growth	  
aging	  

regula@on	  of	  biological	  quality	  	  	  
circadian	  rhythm	  

cell	  communica@on	  
cellular	  ac@va@on	  

respiratory	  gaseous	  exchange	  
blood	  circula@on	  

cell	  adhesion	  
cell	  development	  (neuron)	  
microtubule-‐based	  process	  

regula@on	  of	  GTPase	  ac@vity	  	  
myelina@on	  

immune	  response	  
neurological	  system	  process	  	  

cell	  prolifera@on	  
cell-‐cell	  signaling	  
protein	  folding	  	  
reproduc@on	  

anatomical	  structure	  morphogenesis	  	  
mul@organism	  process	  

angiogenesis	  
cytoskeleton	  organiza@on	  

cell	  differen@a@on	  
mul@cellular	  organismal	  development	  	  

cellular	  component	  organiza@on	  
protein	  complex	  assembly/disassembly	  

cell	  cycle	  
anatomical	  structure	  development	  

apoptosis	  
muscle	  contrac@on/learning/blood	  coagula@on	  	  

transport	  
protein	  modifica@on	  

gene	  expression	  
signal	  transduc@on	  

response	  to	  s@mulus	  	  
metabolic	  process	  

Fig. 3. Distribution of all biological processes from the third gene signature.
The number indices the number of gene products that participate to the
corresponding biological processes.

Supplementary information accompanies the paper on
lab’s website (http://www.display.tuc.gr/bcannotstudy/)
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