
Estimation of Correlations Between Copy-Number Variants in
Non-Coding DNA

Catherine Stamoulis, Member, IEEE

Abstract— Allelic DNA aberrations across our genome have
been associated with normal human genetic heterogeneity as
well as with a number of diseases and disorders. When
copy-number variations (CNVs) occur in gene-coding regions,
known relationships between genes may help us understand
correlations between CNVs. However, a large number of these
aberrations occur in non-coding, extragenic regions and their
correlations may be characterized only quantitatively, e.g.,
probabilistically, but not functionally. Using a signal processing
approach to CNV detection, we identified distributed CNVs in
short, non-coding regions across chromosomes and investigated
their potential correlations. We estimated predominantly local
correlations between CNVs within the same chromosome, and a
small number of apparently random long-distance correlations.

I. INTRODUCTION

Copy-number variations (CNV), including allelic dupli-
cations, deletions and rearrangements, represent a significant
part of our normal genetic variability, and occur in both gene-
coding and non-coding regions [4][23][11]. To date, more
than 66,000 CNVs have been reported in the Database of Ge-
nomic Variants (DGV) [6][18][2]. In addition to normal DNA
aberrations, pathological CNVs have been associated many
diseases and disorders [13][22][9]. One of the challenges of
genomic research is to identify and characterize correlations
between CNVs, potentially driven by biologically-relevant
mechanisms. In cases where CNVs occur in gene-coding
regions, knowledge of individual genes in these regions and
biological pathways may help explain correlated variants.
However, a high number of identified CNVs are located
in non-coding regions of healthy or pathological genomes.
Thus, their role and correlations with distributed aberrations
also in non-coding regions are often unclear [7][9][16]. There
is, however, increasing evidence that non-protein coding
DNA may play an important regulatory role, e.g. [10]. Extra-
genic regions constitute ∼98% of our genome and have been
the focus of a large number of studies. There is also evidence
that highly conserved non-coding regions may play a role
in structural connections between chromosomes [17][5][8].
However, the function and correlations of genomic regions
which are distant from known genes remain unclear [19].
In addition, it is unknown whether the occurrence of these
CNVs is entirely random or guided by currently unknown
mechanisms. We present preliminary results on the esti-
mation of correlated CNVs in a small set of non-coding,
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evolutionarily ultra-conserved genomic regions, detected in
Array Comparative Genomic Hybridization (array CGH) data
from healthy individuals. To detect these CNVs we applied
a novel signal processing-based method that treats genomic
sequences as continuous signals and uses a matched-filtering
approach to identify regions of pairwise similarity and dis-
similarity [21]. We show that there are predominantly local
correlations between CNVs within the same chromosome,
but that there are only limited correlations between CNVs in
different chromosomes.

II. METHODS
A. Array CGH data and genomic regions of interest

Array comparative genomic hybridization (aCGH) is a
high-resolution technology that enables simultaneous detec-
tion of CNVs across the genome. It involves hybridization
of differentially fluorescent dye-labeled reference and test
sequences on a microarray, and subsequent estimation of rel-
ative allelic changes as the log2-ratio of the two fluorescence
intensities. Here, 200 normal array CGH sequences (log2

intensity ratios) from the Cancer Genome Atlas [1] were
analyzed (Agilent Human Genome CGH Microarray 244A,
60 bp resolution). A common reference sequence was used
to normalize each sequence in a particular batch. Array CGH
data is typically noisy and contains genomic artifacts which
were suppressed using a denoising procedure involving se-
quence decomposition into individual signal components and
elimination of low-amplitude, high-frequency components,
a process that also increased the data signal-to-noise ra-
tio (SNR) [21]. Matched-filtering, a quasi-optimum pattern
matching filtering method, was then applied to detect regions
of dissimilarity between sequences and thus CNVs.

Although CNVs have been identified across the entire non-
coding part of the genome, this preliminary study focused
on CNVs identified in ultra-conservative extragenic DNA
segments. Thus, genomic regions of interest were selected
as followed, based on the study by [5] who identified 481
ultra-conservative (UC) non-coding segments longer than
200 base pairs, of which 111 overlapped the mRNA of known
protein-coding genes, and only 256 showed no evidence
of transcription and did not overlap actively transcribed
genomic regions[5]. From these, inter-genic segments in
close proximity (≤∼40 Kbp in either direction) to protein
coding genes, were also eliminated. Ultimately, 24 clearly
extra-genic DNA segments were chosen, which included UC
elements. Table I lists analyzed segments in each chromo-
some, their length and corresponding cytoband. Segments
were extracted from the database in [3] and compared to
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the DGV to ensure that all analyzed segments contained
previously identified CNVs.

Chr Gen. coords (build 36/hg18) Cytoband Length (kbp)

1

10,774,189-10,888,710 p36.22 114.5
44,762,643-44,775,496 p34.1 12.85
87,801,345-88,701,111 p22.3-p22.2 899.8

211,655,265-213,956,186 q32.3-q41.0 2,291.1

2
57,825,856-60,295,497 p16.1 2,469.6

157,259,412-157,609,094 q24.1 349.68
164,369,890-164,552,815 q24.3 182.92

3

18,819,160-19,009,599 p24.3 190.44
70,648,908-70,955,219 p13.0 306.3

138,465,742-138,608,879 q22.3 143.14
148,532,029-148,532,925 q24.0 18.99

5 76,976,710-77,305,243 q14.1 328.53
87,204,003-87,729,136 q14.3 525.13

6 51,184,545-51,257,443 p12.3 72.9
98,223,040-99,102,761 q16.1 879.7

7 114,903,668-114,922,472 q31.2 18.8
9 80,662,013-81,062,015 q21.31 400.0
10 102,362,416-102,438,368 q24.31 75.95
13 71,566,646-71,670,119 q21.33 103.47

14 28,930,805-29,812,660 q12 881.85
96,500,869-96,949,518 q32.2 448.65

15 33,706,004-34,607,756 q14 901.75
18 33,818,719-34,318,041 q12.2 499.3
19 35,459,348-35,533,833 q12 74.48

TABLE I
ANALYZED NON-CODING GENOMIC REGIONS.

B. CNV detection

We have previously developed a methodology based on
the matched-filter for detecting regions of pairwise similarity
and dissimilarity between genomic sequences [20][21]. By
definition, the matched-filter increases the signal-to-noise
ratio (SNR) in regions of pairwise waveform similarity and
decreases SNR in regions of mismatch. Therefore, when
comparing genomic sequences that are spatially similar to
each other with the exception of regions containing CNVs
in some sequences but not in others, signal mismatch may be
used to identify these regions. The matched-filter improves
SNR by reducing the noise spectral bandwidth to that of
the desired signal. In theory, the optimum filter h(k) that
maximizes SNR is the time-reversed signal itself, i.e., h(k) =
y(−k), under the assumption of white noise. Thus, the
filtered signal yMF is given by

yMF (k) = h(k)⊗ y(k) (1)

where ⊗ denotes convolution. As a waveform matching
technique, matched-filtering treats discrete DNA sequences
as continuous signals, potentially resulting in spurious spatial
correlations between probes. However, we have previously
shown that this approach does not introduce significant
correlations in the filtered sequence [21]. In addition, the
method strongly depends on the choice of the template
sequence. There is no unique filter in this caase, since there
is no unique genomic sequence that captures all normal
human genomic variability. Thus, we sequentially matched
each sequence with all other sequences and at each iteration
obtained a new filtered sequence with increased SNR in

regions of genomic similarity. Residual signals were obtained
by subtracting filtered signals from the original sequences.
An allelic gain was called if the log2 ratio at a particular
marker was ≥ log2( 3

2 ), thus assuming a threshold of 1 copy
gain, and an allelic loss was called if the log2 ratio was
≤ log2( 1

2 ), assuming a threshold of 1 copy loss. Although
thresholds may be set according to the analysis of interest, we
used thresholds of one gain or one loss for simplicity. Finally,
a CNV was called based on the frequency of its occurrence.
The probability of a CNV at marker i was defined as the
union of the probabilities of (mutually exclusive) gain and
loss at that marker [21]:

Pr(CNVi) =

∑
j log2(i) ≥ log2(

3
2 ) +

∑
m log2(i) ≤ log2(

1
2 )

n
(2)

where j = 1, ..., J is the number of sequences with gains
above the threshold, m = 1, ...,M the number of sequences
with losses below the threshold, and n the total number of
sequences in the sample. A 10% frequency was chosen as
the threshold. There are a number of studies that have shown
that common CNVs in the healthy genome are relatively
rare, with frequencies ≤ 10% [12][15]. Only very few CNVs
occur at high frequencies, often in specific populations.

Figure 1 shows examples of raw and matched-filtered
sequences, with locally increased SNR.

Fig. 1. Example of two sequences matched filtered with the same template.
Raw sequences (green), matched-filtered sequences (black). Circles mark
regions with increased SNR which are above the detection threshold in the
filtered sequence but below the threshold in the original sequence.

Note that depending on the structure of a sequence and
its similarity to the template, matched-filtering may have
a negligible effect on the test sequence, as shown in the
top plot in Figure 1. The CNV probability distribution
across markers within each segment appeared to be best
described by an exponential distribution. The parameter λ
of the distribution was estimated for each segment, using
the maximum-likelihood method. An example of the dis-
tribution of of CNV frequency (separately for allelic gains
and losses) in a single segment is shown in Figure 2. The
maximum frequency of CNV gain/loss at each segment and
corresponding estimated rate parameter of the exponential
distribution, of CNV probability, obtained using Equation
2, are shown in Figures 3(a) and 3(b), respectively. There
is no apparent chromosome-dependent variation of the CNV
frequency of occurrence or the spatial probability distribution
of these CNVs as a function of genomic distance.
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Fig. 2. Frequency of detected allelic gains (top) and losses (bottom) ratios
at each marker of a single segment.

(a) Maximum CNV frequency (gain
(black), loss (red)) at each segment.

(b) Variation of the exponential dis-
tribution parameter.

Fig. 3. CNV frequency and probability distribution parameter.

III. RESULTS

Many analyzed genomic segments included multiple al-
lelic gains, but very few losses (only chromosomes 1,2,3 had
detectable losses). In total 52 CNVs were detected of variable
length (30-187kb). Examples of CNVs at four chromosomes
and multiple segments is shown in Figure 4. The actual level
of gain/loss is not shown, only ±1, for gain/loss, respectively.

To assess potential correlations within and across segments
and chromosomes we computed auto-correlation and sample
covariance matrices, assuming each marker corresponds to a
random variable Xm, taking values 1, 0,-1 (gain, no change,
loss). Examples are shown in Figures 5(a)-5(d) and 6.

Clusters of markers corresponding to CNVs were locally
correlated in several individual segments. However, there
were only a few regions across chromosomes which appeared
correlated, and these were typically very short clusters of
markers, often ≤ 50 kb long. From the auto-correlation and
covariance matrices, the adjacency matrices Ai,j between
nodes Xi and Xj of the network graph was defined as
Ai,j = 1σ(i,j)≥α, where α is a threshold on the covariance.
Random variables Xi and Xj correspond to markers at
position i and j either along the same segment (in which
case the sample covariance was the n × p autocorrelation
matrix ri,j of the segment, with p the number of markers
in the segments and n the number of observations), or
along two different segments. Since we are interested in
assessing correlations between segments, and consequently
chromosomes, we set the covariance threshold as: α =

Fig. 4. Detected CNVs at multiple segments in each chromosome. +1
corresponds to gain (not the actual gain magnitude), -1 corresponds to loss.

mins(maxm,s(ri,j , i 6= j)), where the min is taken over
all segments s and the max is over all markers m in a
segment. This is a data-based empirical threshold and thus
not unique. It is a conservative threshold to identify edges
between strongly correlated nodes, since it is based on the
autocorrelation matrices of individual segments. Based on
this threshold and estimated sample covariance matrices, a
random graph was identified, shown in Figure 7.

IV. CONCLUSIONS

We have investigated potential correlations between CNVs
within and across chromosomes, in a small set of evo-
lutionarily ultra-conserved segments of non-coding DNA,
sufficiently distant from any gene-containing regions. We
analyzed 200 array CGH sequences from healthy adults
from the TCGA, using matched-filtering, a pattern matching
signal processing method, which increases SNR locally in the
data and thus facilitates CNV detection. Using a threshold
based on the frequency of CNVs in the studied sample, we
identified 52 CNVs, predominantly allelic gains of variable
length across chromosomes. Chromosomes 1-5 included the
highest number of CNVs. CNV occurrence appeared to
be exponentially distributed across markers. Furthermore,
we estimated both autocorrelation matrices of individual
segments, to assess potential local correlations between
markers and CNVs, and sample covariance matrices be-
tween segments, to assess long-distance correlations between
CNVs. Local correlations between markers and cluster of
markers identified as CNVs were significantly higher within
segments. However, overall correlation between markers was
low (≤ 0.1) in some segments, particularly those with
very short CNVs. In addition, based on estimated segment
covariances, a few CNVs in different chromosomes appeared
to be correlated, independently of the distance between them.
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(a) Segment 1. (b) Segment 2.

(c) Segment 3. (d) Segment 4.

Fig. 5. Autocorrelation matrices of segments 1, 2, 3, 4 in chromosome
1, to measure correlations between loci within individual segments. In
all matrices X and Y axes correspond to loci. Colors represen levels of
correlation, 0 (blue) to 0.7 (red).

Fig. 6. Clockwise from top left: covariance matrices between segments
in chromosomes 1,2, 1,5, 1,6, 1,10, 1,15, 1,19. These matrices measure
correlations between loci across segments.

Specifically, covariances in regions containing CNVs in chro-
mosomes 1, 2, 3, 10 and 19 were above the set threshold. The
location of these CNVs and their long-distance correlations
appeared random. Evidently this is an initial study on CNV
correlations in extra-genic regions and is based on short DNA
segments. A more extensive study of multiple larger regions
is necessary to estimate these correlations robustly.
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