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Abstract— Wearable inertial systems have recently been used
to track human movement in and outside of the laboratory.
Continuous monitoring of human movement can provide valu-
able information relevant to individual’s level of physical ac-
tivity and functional ability. Traditionally, orientation has been
calculated by integrating the angular velocity from gyroscopes.
However, a small drift in the measured velocity leads to large
integration errors that grow with time. To compensate for that
drift, complementary data from accelerometers are normally
fused into the tracking systems using the Kalman or extended
Kalman filter (EKF). In this study, we combine kinematic
models designed for control of robotic arms with the unscented
Kalman filter (UKF) to continuously estimate the angles of
human shoulder and elbow using two wearable sensors. This
methodology can easily be generalized to track other human
joints. We validate the method with an optical motion tracking
system and demonstrate correlation consistently greater than
0.9 between the two systems.

I. INTRODUCTION

Measurement and analysis of human movement has many
applications including assessment of neurological movement
disorders, rehabilitation from injury, and enhancement of
athletic performance. Movement can be measured using a
wide variety of techniques and sensors. Wearable inertial
sensors enjoy the advantages of being simple, unobtrusive,
and self-contained. They are well suited to recording long-
term monitoring while the subject performs normal activities
of daily life at home. A typical wearable inertial sensor
is a compact wearable device that contains a triaxial ac-
celerometer and triaxial gyroscope. Fig. 1 shows an example
of Opal sensor (APDM, Inc., Portland, OR) used in this
study. Traditionally, the orientation of a body segment is
estimated by integrating the angular velocity measured by
gyroscopes, and position is obtained by double integration of
the translational acceleration measured by accelerometers. A
significant problem with integration, however, is that inac-
curacies inherent in the measurements quickly accumulate
in the integrated estimation, resulting in an unacceptable
levels of position error in as little as 10–60 s [1]. Roetenberg

M. El-Gohary and J. McNames (Director) are with the Biomedical
Signal Processing Laboartory in the Department of Electrical and Computer
Engineering at Portland State University (PSU), Portland, Oregon. Email:
mahmoud@pdx.edu, mcnames@pdx.edu.

L. Holmstrom is Chief Information Officer at APDM, Inc. Email:
lars@apdm.com.

J. Huisinga, E. King, and F. Horak (Director) are members of the Balance
Disorders Laboratory in the Department of Neurology at Oregon Health &
Science University (OHSU). Email:huisinga@ohsu.edu, kinged@ohsu.edu,
horakf@ohsu.edu.

J. McNames, L. Holmstrom, F. Horak, OHSU, and PSU have a significant
financial interest in APDM, a company that may have a commercial interest
in the results of this research and technology. The potential individual and
institutional conflicts of interest have been reviewed and managed by OHSU
and PSU.

Fig. 1. Example of an Opal inertial sensor (APDM, Inc.).

showed that integration of gyroscope data resulted in a
drift between 10 − 25◦ after one minute [2]. One approach
to reducing integration drift is to fuse the gyroscope data
with complementary data from other sensors. Luinge et al.
estimated orientation by fusing gyroscope and accelerom-
eter data [3]. The difference between tilt computed from
gyroscope and that from accelerometer sensors was used as
an input to a Kalman filter to obtain a better tilt estimate.
The estimate was then combined with the rotation around
the vertical axis to produce a better orientation estimate.
However, the estimation was accurate for only brief periods
when the subject was not moving and when the acceleration
measurements were only due to gravity. Luinge et al. devel-
oped a method that used constraints in the elbow to measure
the orientation of the forearm with respect to the upper
arm [4]. They reported an average orientation error of 20◦.
Giansanti et al. combined gyroscopes with accelerometers
to track position and orientation during three tasks; stand-
to-sit, sit-to-stand and gait-initiation [5]. Estimation error
was minimal, however they restricted the application to short
periods of 4 s.

Bachmann et al. investigated the effect of electrical and
ferromagnetic materials on the accuracy of orientation track-
ing using a triaxial accelerometer, gyroscope and magne-
tometer sensors [6]. They observed errors that ranged from
12◦ to 16◦ and stated that these errors can be avoided by
maintaining an approximate distance of two feet from any
source of disturbance. This restricts the use of their tracking
system to custom laboratory environment. Yun et al. used a
quaternion-based EKF to track human body motion. A rotary
tilt table with two DOF’s was used to assess the performance
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of the tracker [7]. The error for the pitch angle was not
reported, and an error of 9◦ in less than 2 s was obtained
for the roll angle. Zhou et al. successfully estimated elbow
orientation using inertial sensors mounted on the wrist and
elbow joints. They integrated the rotational rate to localize
the wrist and elbow, and smoothed the abrupt amplitude
changes to reduce overshoots of the inertial measurement
due fast movements to reduce error in position estimation.
They attained a high correlation between position estimates
from the inertial tracker and estimates from a reference
optical tracking system, ≥ 0.91. However, all the reported
correlations were not statistically significant [8].

In this paper we combine kinematic models designed
for control of robotic arms with state space methods to
directly estimate human joint angles of a multi-segment
limb. Estimated joint angles are computed from measured
inertial data as a function of time in a single step using
a nonlinear state space estimator. The estimator utilizes
the unscented Kalman filter which incorporates state space
evolution equations based on a kinematic model of the multi-
segment limb. The proposed algorithm can be applied to any
combination of sensors to track any limb movement in either
real-time or off-line processing mode with higher accuracy
for slow and fast motion with a minimal number of sensors.

II. THEORY

In the analysis and control of robotic manipulators, a robot
arm is normally represented as a sequence of links connected
by joints [9]. This convention has also also been successfully
applied in addressing human motion and is based upon
characterizing the configuration between consecutive links
by a transformation matrix. If each pair of consecutive links
is related via a matrix, then using the matrix chain-rule
multiplication, it is possible to relate any segmental link (e.g.,
between the wrist and elbow) to another (e.g., between the
elbow and shoulder).

To obtain a systematic method for describing position and
orientation of each pair of consecutive links, we generate
a transformation matrix between the links using the De-
navit and Hartenberg (D-H) method, starting with attaching
frames or coordinate systems to each link [10]. Each frame
{Xi, Yi, Zi} is then related to the previous one using a 4×4
homogeneous transformation matrix. This matrix depends on
four parameters associated with each link. The first parameter
is the link length ai which is the distance from Zi to Zi+1

measured along the Xi axis. The second parameter is the
link twist αi which is the angle from Zi to Zi+1 measured
about the Xi axis. The distance from Xi−1 to Xi measured
along the Zi axis is known as the link offset di. The fourth
parameter is the joint angle θi, which is the angle from Xi−1

to Xi measured about the Zi axis.

A. Link Transformations

Four transformations are needed to relate the ith frame
to its neighboring (i− 1)th frame. First, rotate about Xi an
angle αi−1 to make the two coordinate systems coincide.
Next, translate along Xi a distance ai−1 to bring the two

origins together. Third, rotate about Zi an angle θi to align
Xi and Xi−1. Finally, translate along Zi a distance di−1

to bring Xi and Xi−1 into coincidence. Each of these
four operations can be expressed by a basic homogeneous
rotation-translation matrix and the product of these four
transformation matrices yields a composite matrix i−1

i T ,
known as the D-H transformation matrix which defines frame
i to its adjacent i− 1

i−1
i T =

c(θi) −s(θi) 0 ai−1

s(θi)c(αi−1) c(θi)c(αi−1) −s(αi−1) −s(αi−1)di
s(θi)s(αi−1) c(θi)s(αi−1) c(αi−1) c(αi−1)di

0 0 0 1


where s(αi−1) = sin(αi−1), c(θi) = cos(θi), etc.

B. Shoulder and elbow joint angle tracker example

As an example, we present a model for forearm move-
ment with shoulder and elbow joints. Fig. 2 shows the
base reference frame 0 at the center of the shoulder joint.
Frames 1 through 3 represent shoulder flexion/extension, ab-
duction/adduction and internal/external rotation, respectively.
Frames 4 through 5 represent the elbow flexion/extension and
pronation/supination of the forearm. The two inertial sensors
are placed near the wrist and on the upper arm between the
shoulder and elbow as shown in Fig. 3. Table I shows the

Fig. 2. Kinematics diagram of the arm model with Frame 0 as the
reference fame. Frames 1 through 3 represent shoulder flexion/extension,
abduction/adduction and internal/external rotation, respectively. Frames 4
through 5 represent the elbow flexion/extension and pronation/supination.

D-H parameters, where αi−1 is the angle to rotate to make
the two coordinate systems coincide, the length of the upper
arm lu, is the distance from Z3 to Z4 along the X4 axis, lf is
the length of the forearm, and θi is the ith angle of rotation.

C. Velocity and acceleration propagation from link to link

At any instant, each link of the arm in motion has some
linear and angular velocity. The linear velocity is that of
the origin of the frame. The angular velocity describes the
rotational motion of the link. The velocity of link i + 1 is
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Fig. 3. Subject performing elbow flexion, with one inertial sensor attached
with a black band on the wrist and another on the upper arm. Ten reflective
markers were attached to the arm, and three were attached to the sternum.

TABLE I
DENAVIT-HARTENBERG PARAMETERS FOR THE ARM MODEL.

Frame αi−1 ai−1 di θi
1 0 0 0 θ1
2 -π

2
0 0 θ2

3 -π
2

0 0 θ3
4 π

2
lu 0 θ4

5 -π
2

0 lf θ5

that of link i plus the new velocity component added by joint
i+ 1

iωi+1 = iωi + i
i+1R θ̇i+1

i+1Zi, (1)

where i
i+1R is the rotation matrix that relates frame i

to frame i + 1, and is use to represent added rotational
components due to motion at the joint in frame i. If we
multiply both sides of the equation by i+1

i R, we find the
description of the angular velocity of link i+ 1 with respect
to frame i+1

i+1ωi+1 = i+1
i R iωi + θ̇i+1

i+1Zi+1

The linear velocity of the origin of frame i+ 1 is the same
as that of the origin of frame i plus a new component caused
by the rotational velocity of link i

i+1vi+1 = i+1
i R(ivi + iωi × iPi+1)

where iPi+1 is the position vector of the frame i+ 1 and is
the upper right 3× 1 vector of the D-H matrix. The angular
acceleration from one link to the next is
i+1ω̇i+1 = i+1

i R iω̇i+ i+1
i R iωi×θ̇i+1

i+1Zi+1+θ̈i+1
i+1Zi+1

The linear acceleration of each link frame origin is
i+1v̇i+1 = i+1

i R
[
iω̇i × iPi+1 + iωi × (iωi × iPi+1) + iv̇i

]
where the single and double dot notation is used to represent
first and second derivatives with respect to time. The rotation
matrices R can be obtained by taking the transpose of the
upper left 3 × 3 D-H transformation matrix, and the D-H

parameters shown in Table I. We initialize ω0 = ω̇0 =
(0, 0, 0)T , and v̇0 = (gx, gy, gz)T , where g is gravity.
These equations are part of what is known as Newton-Euler
equations of motion. The are forward recursive equations that
propagate linear and angular velocity and acceleration from
the reference coordinate system to the last link.

D. State Space Model

Having defined the kinematic model of the arm, we now
formulate the relationship between the measured data and the
biomechanical states using a state space model. The general
discrete time statistical state-space model is of the form,

x(n+ 1) = fn [x(n), u(n)] (2)
y(n) = hn [x(n), v(n)] (3)

where n is the discrete time index, x(n) is the unobserved
state of the system, y(n) is the observed or measured data,
fn[·] and hn[·] are nonlinear state and observation equations,
u(n) is process noise, and v(n) is an observation noise. Both
u(n) and v(n) are assumed to be white noise processes with
zero mean. The state model equations which describe the
evolution of the states with time are given by

θi(n+ 1) = θi(n) + Tsθ̇i(n) +
1
2
T 2

s θ̈i(n) (4)

θ̇i(n+ 1) = θ̇i(n) + Tsθ̈i(n) (5)

θ̈i(n+ 1) = αθ̈i(n) + uθ̈i
(n) (6)

where i = {1, . . . , 5}, θi(n) is the ith angle at time n,
θ̇i(n) is the angular velocity of the ith angle at time n,
θ̈i(n) is the angular acceleration of the ith angle at time
n, uθ̈i

(n) is a white noise process with zero mean, α is a
process model parameter, and Ts = 1/fs is the sampling
period. These are standard equations for a physical object
traveling at a constant acceleration. In this case the model
assumes the acceleration is constant for the duration of a
sampling interval, which is short enough (approximately
8 ms) for this approximation to be sufficiently accurate for
tracking. The model of angular acceleration is a first-order
autoregressive process with zero mean. Typically the value
of α will be assigned an intermediate value that represents
typical patterns of human motion in joint angles.

The observation model describes the relationship of the
states to the observed data obtained from the inertial sen-
sor. We assume that the inertial sensor includes triaxial
accelerometers and triaxial gyroscopes. This simple model
assumes the sensor noise is additive and white, but could
be easily generalized to include drift, which is common to
MEMS inertial sensors.

y(n) =


ωx(n)
ωy(n)
ωz(n)
v̇x(n)
v̇y(n)
v̇z(n)

+


vgx(n)
vgy(n)
vgz(n)
vax(n)
vay(n)
vaz(n)

 , (7)

where ωx, ωy and ωz are the angular velocities along the
x, y and z axes, respectively. The gyroscope noise along the
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different axes is described by vgx, vgy and vgz . Similarly, the
translational accelerations along the three axes are v̇x, v̇y and
v̇z , and the accelerometer noise is given by vax, vay and vaz .
The acceleration measurement vector includes translational
accelerations and the effects of gravity.

E. Nonlinear state estimator

The arm model introduced above exhibits nonlinearities.
The use of the linear Kalman filter in a highly nonlinear
dynamics introduces estimation errors. The most common
approach to solving the nonlinear estimation problem is
the extended Kalman filter (EKF), which is based upon
linearizing the state and observation models with a first-
order Taylor expansion. However, this linearization leads
to poor performance if the dynamics are highly nonlinear
and the simple linearized model based on the gradient is an
inaccurate approximation. The EKF also requires Jacobian
matrices and inverse matrix calculation. Alternatively, se-
quential Monte Carlo methods (i.e, particle filters), which are
applicable to highly nonlinear and non-Gaussian estimation
problems, allow for a complete representation of the density
function of the unobserved states using a finite number
of samples. However, particle filters require much more
computation. The unscented Kalman filter (UKF) has nearly
the same computational requirements as the EKF, but uses a
more accurate method to characterize the nonlinear effects.
The results in this paper were generated with a UKF [11].

III. RESULTS

To evaluate the performance of the inertial tracking system
in monitoring arm movement, the joint angles calculated by
the inertial tracker were compared to those obtained by an
optical tracking system, used as a reference system. The
study was conducted in the Balance Disorders Laboratory at
OHSU, which is equipped with an optical motion tracking
system that comprises eight high-speed, infrared cameras
(Eagle Analog System, Motion Analysis Corporation, Cal-
ifornia). The cameras record position of reflective markers
placed on the upper arm, forearm, shoulder and wrist.
Optical relative joint angles were calculated from three-
dimensional markers positions using Grood’s method [12].
One subject performed a set of tasks described in Table II.
Each articulation was performed for 15 s while keeping the
rest of the body still. The correlation coefficients between the
angle estimates from the inertial tracker and estimates from
the reference optical tracking system were all statistically
significant (p < .05) and ≥ 0.91.

TABLE II
CORRELATION BETWEEN OPTICAL AND INERTIAL ANGLES OF

SHOULDER AND ELBOW OF A SUBJECT PERFORMING A SET ARM

MOVEMENT.

Task R (normal speed) R (fast speed)
Elbow Flexion/Extension 0.92 0.89
Elbow Supination/Pronation 0.96 0.93
Shoulder Flexion/Extension 0.97 0.94
Shoulder Abduction/Adduction 0.94 0.91

One of the limitations of previous tracking methods is
that they performed well only during slow movements. To
determine the capability of the proposed algorithm of track-
ing fast activities, the subject was instructed to repeat the
same activities as fast as they could. On average, the subject
reached from initial anatomical position to maximum joint
movement range in 0.5 s, compared to 1.0 s during normal
speed activities. Although, the correlation was slightly lower
than that for the regular speed, the correlation coefficients
were still statistically significant (p < .05) and were all
≥ 0.89.

IV. CONCLUSION

This paper described a new method for estimating joint an-
gles of a multi-segment limb using inertial sensors. Estimated
joint angles are computed from measured inertial data as a
function of time in a single step using a nonlinear state space
estimator. The estimator utilizes the unscented Kalman filter
which incorporates state space evolution equations based on a
kinematic model of the multi-segment limb. The algorithms
outlined in this paper can be applied to any combination
of sensors, and could be generalized to track any limb
movement in either real-time or off-line with higher accuracy
for slow and fast motion with a minimal number of sensors.
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