
A New Neural Network Approach for Short-Term Glucose Prediction Using
Continuous Glucose Monitoring Time-Series and Meal Information

C. Zecchin, A. Facchinetti, G. Sparacino, G. De Nicolao, and C. Cobelli*, Fellow IEEE

Abstract— In the last decade, improvements in diabetes daily
management have become possible thanks to the development
of minimally-invasive portable sensors which allow continuous
glucose monitoring (CGM) for several days. In particular, hypo
and hyperglycemia can be promptly detected when glucose
exceeds the normal range thresholds, and even avoided through
the use of on-line glucose prediction algorithms. Several al-
gorithms with prediction horizon (PH) of 15-30-45 min have
been proposed in the literature, e.g. including AR/ARMA time-
series modeling and neural networks. Most of them are fed by
CGM signals only. The purpose of this work is to develop
a new short-term glucose prediction algorithm based on a
neural network that, in addition to past CGM readings, also
exploits information on carbohydrates intakes quantitatively
described through a physiological model. Results on simulated
data quantitatively show that the new method outperforms
other published algorithms. Qualitative preliminary results on
a real diabetic subject confirm the potentialities of the new
approach.

I. INTRODUCTION

Diabetes is a chronic disease affecting more than 250
millions of people in the world. It is characterized by elevated
blood glucose, due either to the inability of the pancreas
to produce insulin (type 1 diabetes), or by derangements
in insulin secretion and action (type 2 diabetes). Diabetes
standard therapy is mainly based on diet, physical exercise
and insulin and drug administration, optimized according
to the information obtained by self monitoring of blood
glucose 3-4 times per day. This approach is suboptimal,
and blood glucose concentration often exceeds the normal
range thresholds (70-180 mg/dl). Hyperglycemia (glucose
above 180 mg/dl) causes long term complications, as neu-
ropathy, retinopathy, and cardiovascular and heart diseases;
hypoglycemia (glucose lower than 70 mg/dl) may lead to
risky short term events, such as diabetic coma [1].

In the last ten years, new horizons have been opened
when continuous glucose monitoring (CGM) sensors have
become available. They are non-invasive or minimally in-
vasive portable devices, which allow the fine monitoring
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of the glycemic concentration in a quasi ”continuous” way,
returning high frequently measurements (e.g. one every 1-5
min) of glycemic concentration for several days (up to 14).
Some CGM devices incorporate systems for the real-time
generation of alarms when the measured glycemia exceeds
the normal range thresholds [2]. However, it would be prefer-
able to prevent hypo/hyperglycemia, instead of medicating it
[3]. This would be possible if an alert were generated e.g.
20-30 min before the occurrence of the risky event.

Recently, several techniques, based e.g. on polynomial
[4], AR/ARMA [5] [6], ARX [7], state space [8] or neural
network models [9] [10] have been proposed for short term
glucose prediction. Published results suggested that, with
prediction horizon (PH) of 30-45 min, sufficiently accurate
glucose predictions can be obtained. Notably, in [7] and [10]
available information on ingested carbohydrates and injected
insulin was exploited without obtaining any significant im-
provement over much simpler models.

The purpose of this work is to develop a new short-
term (PH=30) glucose prediction algorithm based on a
neural network that, in addition to past CGM readings, also
exploits information on carbohydrates intakes quantitatively
described through a physiological model in a smarter way.

The performance of the prediction algorithm is tested on
5 virtual patients generated in silico via a Type 1 Diabetes
simulator [11] and on one real patient. Results are compared
with those obtained by the first order polynomial-based [5]
(hereafter referred as poly(1)) and the neural network based
[9] (hereafter referred as NNPG) prediction algorithms.

II. DATA BASE

A. Simulated Data

Five virtual patients were extracted from the UVa/Padova
Type-1 Diabetic Simulator [US2008/067725] [11]. For each
subject, the simulation scenario consisted of 5 consecutive
days of monitoring (sampling time of 1 min), with 3 meals
per day. Breakfast, lunch and dinner were randomly located
respectively in the time intervals 6− 8, 12− 14, and 19− 21,
and consisted of 45+u, 75+u and 85+u g of carbohydrates
respectively, where u is a random variable uniformly dis-
tributed in (−10, 10), used to have more realistic simulations
and account for variability in carbohydrates intake.

From each profile, a subset of samples in 3 consecutive
days was extracted and used to train and validate the network,
and 2 subsets of samples in 1 day were extracted and used
to test the algorithm performance.
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B. Real Data

The considered real data set consists of CGM measure-
ments (FreeStyle NavigatorTM , 1 min sampling time) and
information on meals collected in a Type 1 diabetic volunteer
for 7 consecutive days during the DIAdvisor project [12].

III. THE GLUCOSE PREDICTION ALGORITHM

A. Overall description

Previous applications of NNs to CGM prediction improved
the performance of much simpler strategies, based e.g. on
polynomial model of order 1, (poly(1)), or on autoregressive
model of order 1 (AR(1)), only slightly, as demonstrated by
comparing the results reported in [9], [10], with those of e.g.
[5]. A possible explanation for this only mild improvement
is that CGM data present predominantly piecewise linear
components, which can be satisfactorily described even by
resorting to simple linear algorithms. The direct application
of NNs to predict CGM data forces them to learn both linear
and non linear dynamics, mitigating their peculiar ability
of modeling non linear relationships between inputs and
outputs.

According to the above rationale, the prediction algorithm
proposed in this study is composed by two parts: the simple
poly(1) model [5], to describe linear dynamics, and a NN
module, trained to correct the error committed by poly(1)
(in which, ideally, only non linearities are present). For the
sake of brevity, hereafter, this algorithm will be referred to as
NN-LPA (NN-Linear Prediction Algorithm). The complete
structure is schematized in Fig. 1.

The time-varying poly(1) model predicts the future
glycemia (ĈGM l(t + PH)) on the basis of the last CGM
sensor readings. Past poly(1) predictions are stored for PH
min, and, every time the sensor provides a new CGM read-
ing, the error e(t) between the true glycemic value, and the
one forecasted by the poly(1) model PH minutes previously,
is computed. This error, together with other inputs (described
below), enter a feed-forward neural network trained to pre-
dict the offset between e(t), and the present unknown error,
that affects ĈGM l. This offset is then summed to e(t), to
obtain an estimate of e(t+ PH). Finally, ĈGM l(t+ PH)
is combined with ê(t+PH), to have a more accurate value
for the expected glycemia, that would be measured by the
sensor in PH min.
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Fig. 1. Block scheme of the proposed CGM predictor.

B. NN structure

By resorting to the Matlab R2010a R© Neural Networks
Toolbox [13], network structure and inputs have been in-
vestigated through k-fold cross validation strategy on the
training set data, obtaining a compromise between precision
of the NN in fitting the training data and ability to generalize.
The resulted network is totally connected and feedforward,
with one hidden layer with 8 neurons, each one with tangent
sigmoid activation function, and an output layer with one
neuron with linear transfer function. In particular, the inputs
are

• the current glucose concentration measured by the CGM
sensor,

• the CGM trend, relative to the last 15 min of monitoring
• the current prediction error

e(t) = ĈGM l(t)− CGM(t)

where ĈGM l(t) is the CGM value, predicted 30 min-
utes before by the poly(1) model, and CGM(t) is the
current CGM value measured by the sensor.

• the trend of the prediction error, relative to the last 15
min:

• the estimation of the future glucose rate of appearance
(RaG) of ingested carbohydrates, computed at the time
instant at which we want to predict the CGM (i.e.
t+30). The rate of appearance of glucose in the blood
is obtained through the model proposed in [14]

• three trend values of the future RaG, computed every
10 minutes.

The output De(t) is the difference between the unknown
error, affecting the present poly(1) prediction of CGM(t+30),
and e(t) (the error committed 30 minutes previously by
poly(1), forecasting the CGM value just measured by the
sensor).

Inputs and output have been properly scaled, so that,
at the beginning of the training procedure, all the signals
have potentially the same weight, and they all belong to the
linear range of the tangent sigmoid activation function of the
neurons of the hidden layer.

C. NN training

Network parameters are randomly initialized and opti-
mized through backpropagation Levenberg-Marquardt train-
ing algorithm [13], applied in a batch mode. The training
procedure is stopped using cross validation, after 100 con-
secutive worsening of the NN performance on the validation
set.

IV. RESULTS

A. Evaluation methodologies

The proposed prediction algorithm (NN-LPA), the method
developed in [5] (poly(1)) and the NN implemented in [9]
(NNPG) were quantitatively evaluated by computing:

• the Root Mean Square Error, RMSE, (mg/dl) between
the predicted time series and the target (i.e. the glucose
series measured by the CGM sensor). The RMSE is
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Fig. 2. A zoom of a simulated CGM series (grey continuous line), with the prediction (PH=30min)of NN-LPA (black continuous line), and the prediction
of poly(1) (dotted line, left panel) and of NNPG (dashed line, right panel).

largely used to evaluate the goodness of time-series
prediction [5] [9].

• the temporal gain (TG (min)), obtained as TG =
PH − delay, with the delay defined as the shift that
minimizes the distance between predicted and target
time series. This metric was used, for instance in [5]
[9]. The closer to PH, the better the TG, since future
hypo/hyperglycemic events could be mitigated, or even
avoided, if they are predicted sufficiently in advance.

• the “clinical usefulness” of the predicted profile, quan-
tified with the index J [15].

B. Results on simulation

The NN-LPA, poly(1) and NNPG were all trained on the
training set, and tested on an independent test set. No pre-
processing (including digital filtering) of data was applied.

An example of the application of the three prediction
algorithms (PH = 30 min) is displayed in Fig. 2. A detail of
the time window 6:00-14:30 h is reported. By eye inspection,
NN-LPA (continuous black line) performs significantly better
than other methods. Focusing on the left panel (NN-LPA vs
poly(1), dotted line), the accuracy of the prediction during
and after a meal has been significantly improved, the RMSE
has been reduced from 25.6 to 12.1 mg/dl, and the TG
achieved by NN-LPA is 6 min better than the one of poly(1)
(26 min vs 15 min). Moreover, NN-LPA is also more rapid
in detecting changes in the sign of CGM derivative, reducing
the typical overshooting that characterizes poly(1) prediction.
This aspect may be important in an alarm generation context,
because it would mitigate the risk of generating false alerts
(consider e.g. the false hyper-alert that poly(1) would have
generated around time 9:20). Focusing on the right panel,
the better performance of NN-LPA with respect to NNPG
(dashed line) is rather evident even by eye. The prediction
obtained by NN-LPA is more accurate than NNPG in terms
of RMSE (12.1 vs 16.4 mg/dl), and significantly more
regular, with J equals to 9 and 353 for NN-LPA and NNPG,
respectively. We recall that, according to [15], the lower J,
the better the prediction.

Numerical results, reported in Table I, confirm what al-
ready seen on the representative subject of Fig. 2, i.e. NN-

LPA outperforms both other methods. More importantly, the
non parametric Mann Whitney U test confirms that all the
improvements registered among the numeric values of the
indexes are significant (p < 0.05), apart from the value of J
relative to NN-LPA and poly(1).

The RMSE is satisfactory for both NNs, and markedly
lower than for the poly(1) model. Moreover, NN-LPA is
slightly, but significantly more accurate than NNPG. Con-
sidering the mean TG, NN-LPA gives about 26 minutes
of net forecasting, virtually allowing patients to take coun-
termeasures to avoid (or at least mitigate the effect of)
a dangerous hypo or hyperglycaemic event, and to tune
therapies accordingly with the expected future glucose. The
TG of NN-LPA is significantly higher than the TG observed
with the other two models (+3.7 and +14.6 min greater than
NNPG and poly(1), respectively).

Finally, the mean values of the index J show that the
predictions obtained with NN-LPA and with poly(1) are far
more regular than the profiles forecasted with NNPG. In a pa-
tient perspective, the smoothness of the predicted time series
is crucial, since oscillations can facilitate the generation of
false hypo and hyper-alerts, lowering the predictor reliability.

C. Results on a real time-series

The NN-LPA was trained and tested on the CGM profile
of one real patient, monitored for 7 consecutive days with
the FreeStyle NavigatorTM (1 min sampling time). The pre-
diction obtained on the test series is reported in Fig. 3. As
we can note in the left panel, NN-LPA (continuous black
line) is more rapid than poly(1) (dotted line) in detecting

TABLE I
MEAN (± SD) RMSE, TG, AND J OBTAINED ON SIMULATED DATA,

PREDICTING FUTURE CGM READINGS (PH=30MIN)

NN-LPA NNPG poly(1)

RMSE [mg/dl] 9.7± 1.1 13.4± 2.4 19.4± 4.2

TG [min] 26.4± 2.9 22.7± 5.0 11.8± 1.9

J [-] 8.2± 1.6 201.2± 76.7 3.2± 1.0
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Fig. 3. A zoom of the real test-CGM series (grey continuous line), with the prediction of NN-LPA (black continuous), and the prediction (PH=30min)
of poly(1) (dotted line, left panel) and of NNPG (dashed line, right panel).

changes in CGM derivatives, as observed on simulated data.
Concentrating on the right panel, it is clear by eye that NN-
LPA prediction is smoother than NNPG profile (dashed line),
and is also far more adherent to the target CGM series. As
far as numerical indexes is concerned, the RMSE results
28.2 mg/dl for NN-LPA, 40.0 mg/dl for NNPG and 30.5
mg/dl for poly(1). J is 10.0 for NN-LPA, 99.8 for NNPG
and 0.8 for poly(1). No differences are reported for the TG,
that is equal to 12 min for all models. These results are
promising and suggest that, increasing the dataset, the new
algorithm would be able to accurately predict a wide variety
of glycemic dynamics, allowing to improve diabetes therapy
and the goodness of glycemic control.

V. CONCLUSIONS

In this paper we presented a new algorithm, for short-
term glucose prediction based on NN. The major novelties
are: a) the incorporation in the prediction machinery of a
physiological model able to reliably describe glucose rate of
appearance after meals [14]; b) a better exploitation of NNs
strengths by using a NN to predict the components of the
CGM signals which result not modelable though a simple
linear approach such as poly(1).

The performance of the new prediction algorithm was
tested on 5 virtual patients generated in silico via a Type 1
Diabetes simulator [11] and on one real patient. Results were
shown to be better than those obtained, on the same data, by
two previously published methods (i.e. [9] and [5]).

Future developments include a more exhaustive test of the
new algorithm, and its comparison with other state of the art
methods, on enlarged simulated and real datasets. Moreover,
the possibility of exploiting information on injected insulin
doses, when available, will be also investigated.
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