
  

  

Abstract—This paper introduces a kernel adaptive filter 
implemented with stochastic gradient on temporal differences, 
kernel Temporal Difference (TD)(λ), to estimate the state-action 
value function in reinforcement learning. The case λ=0 will be 
studied in this paper. Experimental results show the method’s 
applicability for learning motor state decoding during a 
center-out reaching task performed by a monkey. The results 
are compared to the implementation of a time delay neural 
network (TDNN) trained with backpropagation of the temporal 
difference error. From the experiments, it is observed that 
kernel TD(0) allows faster convergence and a better solution 
than the neural network. 

I. INTRODUCTION 
RAIN machine interfaces (BMIs) are an innovation in 
neurotechnology, and have the potential to be a 

significant aid for those with neuromuscular disabilities. 
Neural decoding of sensory-motor signals is a necessary step 
toward this goal. Initial online implementations of BMIs have 
demonstrated the ability of control for cursor positions or a 
single robotic movement depending on sensory-motor signal 
was reported in [2, 3, 4]. Further developments for controlling 
a real prosthetic arm or sequence of movements are presented 
in [5, 6, 7, 8, 9]. Instead of focusing on motor movement 
reconstruction, current research focuses on the development 
of a system for real-time interaction with the environment and 
to achieve higher level performance [10, 11, 12].  

Machine learning algorithms have been used for motor 
movement or state decoding. Important features to evaluate 
are the learning speed and stability. Supervised learning is 
one popular approach in BMI [13], but it requires a desired 
signal in order to learn. Even in this case due to brain 
plasticity frequent calibration (retraining) is necessary. In 
contrast, reinforcement learning (RL) algorithms are a 
general framework for adapting the system to a novel 
environment, and this aspect is similar to how biological 
organisms interact with environment and learn from 
experience. Moreover, RL is able to learn only with rewards 
from the environment. Unlike supervised learning, RL adapts 
without the information of desired signal. Therefore, RL is 
well suited for the BMI decoding paradigm. 
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Previous work in an RL framework used a time delay 
neural network (a delay line followed by a multilayer 
perceptron - MLP) trained with back-propagation (BP) on the 
time difference error to find the optimal mapping between 
neural states and movement directions [11, 12, 14]. The 
application was able to find the optimal neural-to-motor 
mapping without explicit desired information, i.e., the system 
successfully learned from interaction with the environment. 
However, the BP algorithm is sensitive to initialization and 
can become stuck in local minima of the cost function. This is 
a well known issue with BP that is particularly concerning for 
on-line learning, so this application required a search over 
multiple initial conditions [15]. 

 In the last two decades there has been a growing interest in 
the area of kernel methods within the machine learning 
community. The introduction of the support vector machine 
algorithm for pattern recognition [16] rekindled the interest 
on this topic. One of the major appeals of kernel methods is 
the ability to handle nonlinear operations on the data by 
indirectly computing an underlying nonlinear mapping to a 
space (Reproducing Kernel Hilbert Spaces (RKHS)) where 
linear operations can be carried out. The linear solution 
corresponds to a universal approximation in the input space, 
and many of the related optimization problems can be posed 
as convex (no local minima) with algorithms that are still 
reasonably easy to compute (using the kernel trick [17]). A 
kernel approach to TD learning in RL employing Gaussian 
processes and kernel recursive least squares is introduced in 
[22]. Recent work in adaptive filtering has shown the 
usefulness of kernel methods in solving nonlinear adaptive 
filtering problems [18]. Although the standard setting for 
these algorithms differs from RL, elements such as the 
adaptive gain on an error term can be well exploited in 
solving RL problems as we shall see below. 

In this paper, we propose a novel approach using a kernel 
trained with the least mean square (LMS) algorithm and TD 
learning called Kernel Temporal Difference (TD)(λ) for 
estimation of state-action or Q values. In this paper only the 
case λ=0 will be studied in detail. Our algorithm shares many 
features with the kernel least mean square algorithm (KLMS) 
presented in [19] except that the error is obtained using the 
temporal difference framework, i.e. the difference of 
consecutive outputs is used as the error, unless when the 
system is rewarded. To test the efficacy of the proposed 
method, the Kernel TD(0) is applied to a center-out reaching 
task performed by a monkey, and its performance is 
compared to a current implementation of RL using TDNN. 
Results show faster convergence and more stable solution 
with no initialization issues. 
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II. REINFORCEMENT LEARNING  FOR BRAIN MACHINE 
INTERFACES 

Reinforcement learning (RL) adapts a linear or nonlinear 
model from the interaction between an agent and the 
environment. RL maximizes the cumulative sum of future 
rewards in a sequence of actions [20]. Neural decoding finds 
an optimal functional mapping between neural states and 
action directions. To implement neural decoding with RL, the 
agent learns how to transfer the neural states into actions 
based on predefined reward values from the environment. 
Since there are two intelligent agents (the subject and the 
computer algorithm) in close loop feedback as shown in 
Figure 1 this is a cooperative game. In fact, the subject has no 
direct access to actions, and the agent must interpret the 
subject’s brain activity correctly to facilitate the rewards [11]. 

 
Fig. 1.  The decoding structure of RL model in BMI [11]. 

 
The agent starts in a naive state (i.e. the parameters are 

random values), but the subject has been pre trained to receive 
rewards in the environment. The agent changes the cursor 
position at prescribed intervals based on the decoding of the 
subject’s neural activity, and once it reaches the assigned 
target, the system and the subject earn the reward and the 
agent updates its decoder of brain activity. Through iteration, 
the agent learns how to correctly translate neural states into 
action direction (computer cursor position). 

III. KERNEL TEMPORAL DIFFERENCE 

A. Reproducing Kernels and the Kernel LMS Algorithm 
Here we briefly review the main concept of the new 

approach behind kernel method and the kernel least mean 
square (KLMS) derivation. 

Let X be a set. For a positive definite function 
:κ × →X X  [17], there exists a Hilbert space H  and a 

mapping :φ →X H such that ( , ) ( ), ( )x y x yκ φ φ= . H  is 
called a reproducing kernel Hilbert space (RKHS) satisfying  

( ) , ( ) , ( , ) ,f x f x f x fφ κ= = ⋅ ∀ ∈H .        (1) 
The KLMS algorithm attempts to minimize the risk 

functional 2( ( ))E d f x⎡ ⎤−⎣ ⎦  by minimizing the empirical risk 
2

1( ) ( ( ) ( ( )))N
iJ f d i f x i== −∑  on the spaceH defined by the 

kernel κ . Using (1), we can rewrite  

( )2

1
( ) ( ) , ( ( ))

N

i
J f d i f x iφ

=
= −∑

          
(2) 

By differentiating the empirical risk ( )J f
 
with respect to 

f and approximating the sum by the current difference 
(stochastic gradient), we can derive the following update rule: 

1 ( ) ( ( ))i if f e i x iη φ−= +               (3) 

where 1( ) ( ) ( ( ))ie i d i f x i−= −  and 0 0f = which corresponds 
to KLMS algorithm [19]. 

B. Kernel Temporal Difference (TD)(λ) 
As in [1], consider the multistep prediction problem in 

supervised learning, for which we have the observation of 
input sequence (1), (2), , ( )x x x m  and desired d . Then, a 
system will produce a sequence of predictions 

(1), (2), , ( )y y y m  based on the observed sequence. Notice 
that in general, the predicted output is a function of all 
previous inputs: 

( ) ( (1), (2), , ( ))iy i f x x x i= .            (4) 
Here, we assume that ( ) ( ( ))y i f x i= for simplicity. Let the 
function f belong to an RKHS H  as in KLMS. By treating 
the observed input sequence and the desired as a sequence of 
pairs ( (1), ), ( (2), ), , ( ( ), )x d x d x m d , we can obtain the 
updates of function f  after the whole sequence of m inputs 
has been observed as 

1

m

i
i

f f fη
=

← + Δ∑ ,                 (5) 

where ( ), ( ( )) ( ( ))if d f x i x iφ φΔ = −  are the 

instantaneous updates of the function f  from input data 
 

based on (1). 
 By taking ( 1)d y m +  and representing the error as 

( )( ) ( 1) ( )m
k id y i y k y k=− = + −∑ , we can arrive at  

( )
1 1

, ( ( 1)) , ( ( )) ( ( ))
m i

i k
f f f x i f x i x kη φ φ φ

= =
← + + −∑ ∑ .  (6) 

That is, 1, ( ( 1)) ( ( )) ( ( ))i
kif f x i x i x kφ φ φ=Δ = + − ∑ . Thus, 

generalizing for TD(λ) yields 

1
, ( ( 1)) ( ( )) ( ( ))

i
i k

i
k

f f x i x i x kφ φ λ φ−

=
Δ = + − ∑ ,         (7) 

and this approach will be called Kernel TD(λ). 

C. Q –learning via Kernel TD(λ) 
Off-policy RL using Q-learning [21] updates the 

state-action value function Q as follows 
( ( ), ( )) ( ( ), ( ))Q x i a i Q x i a i← +

 [ ( 1) max ( ( 1), ) ( ( ), ( ))]
a

r i Q x i a Q x i a iη γ+ + + −  (8) 

to maximize the expected reward 
{ ( 1) | ( ) , ( ) , ( 1) }a

xxR E r i x i x a i a x i x′ ′= + = = + = .        (9) 
So, we can set the desired output as the cumulative reward. 

For the optimal trained system the output will equal the 
desired response, and the following relation will be satisfied:  

0
( ) ( 1) ( ) ( 1) ( 1)k

k
d i r i k y i r i y iγ γ

∞

=
= + + = = + + +∑

    
 (10) 

where, γ is discount-rate parameter satisfying 0 1γ≤ <  and 
r is a reward value. Therefore, based on TD error 
( ( 1) ( 1)) ( )r i y i y iγ+ + + − , the generalized update for 
Q-learning via Kernel TD(λ) has the form 

( )
1

( 1) , ( ( 1)) ( ( )) ( ( ))
i

i k
i

k
f r i f x i x i x kγφ φ λ φ−

=
Δ = + + + − ∑

 
.(11) 
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In the case of λ=0, the contribution of each observed input 
to the update equation becomes 

( )( 1) , ( ( 1)) , ( ( )) ( ( ))if r i f x i f x i x iγ φ φ φΔ = + + + − ,   (12) 
which in the case of single updates yields  

1

1
( ( )) ( ) ( ) ( ( ), ( ))

i

n TD k
j

Q x i e j I j x i x jη κ
−

=
= ∑ .         (13) 

Here, for discrete actions ( ( )) ( ( ), )nQ x i Q x i a n= = and ( )kI i  
is an indicator vector with the same size as the number of 
outputs which has only the k th value as 1 based on the 
selected action unit k at time i  based on ε-greedy approach 

, k th action is chosen                     (14) 
,  otherwise. 
 

 Therefore, only the weight corresponding to the winning 
action gets updated. Also, ( )TDe i is TD error defined as  

( ) ( ( 1)) ( ( ))TD n m ne i r Q x i Q x iγ= + + − .             (15) 
Recall, that the reward nr corresponds to the action 

selected by the current policy with input ( )x i  because it is 
assumed that this action causes the next input state ( 1)x i + . 

The structure of RLBMI via Kernel TD(λ) is shown in 
Figure 2.  

 
Fig. 2.  The structure of RLBMI via Kernel TD(λ). 

 
The input represents a neural state vector. The number of 

units (kernel evaluations) increase as new training data 
arrives, and each added unit is centered at the previous inputs 

(1), (2), , ( 1)x x x i − . 
Each output component represents the possible action 

directions. Based on the outputs (Q-value), one action which 
has the maximum value is selected by ε-greedy method [21], 
and only the selected action unit has the updated weights.  

IV. DATA RECORDINGS AND NEURAL DECODING 
A female bonnet macaque is trained for a center-out 

reaching task allowing 8 action directions. After about 80% 
success rate, microelectrode arrays are implanted in motor 
cortex (M1). 

Animal surgery is performed under the Institutional 
Animal Care and Use Committee (IACUC) regulations and 
assisted by the Division of Laboratory Animal Resources 
(DLAR) at SUNY Downstate Medical Center. After that, 185 
units obtained from 96 channels are used for the neural 
decoding. 
 The neural decoding aims at 2 targets (1 (right (4.4650, 
23.3040)) and 5(left (-3.5350, 23.3040)) for 8 possible action 

directions. Every trial starts at the center point (0.4650, 
23.3040). The distance from the center to a target is 4cm with 
target radius of 0.8~1cm (Figure 3).  

 
Fig. 3.  The center-out reaching task for 2 targets (1 and 5) allowing 8 
possible action directions (1~8). 

 
 In this implementation, only the successful trials are used 
for training (total number of 43 trials). The system 
performance is evaluated by checking whether the changed 
position reaches the assigned target or not. 

V. EXPERIMENTS AND RESULTS 
The neural states are represented by the firing rates of 185 

units over a 100ms window and their past 6 values, creating a 
7 dimensional time embedding per channel; this amounts to 
an input state vector of 1295 dimensions. After input states 
are preprocessed by normalizing their dynamic range 
between -1 and 1, they are input to the system. 

The output represents the 8 possible directions, and among 
the 8 outputs one action is selected by ε-greedy method [21]. 
Based on the selected direction, the computer cursor position 
is updated. Here, we test for a 1 step reaching task towards the 
assigned target. So, after the 1 step change of position, the 
reward is measured based on the Hamming distance to the 
target. Once the distance reaches the target, the agent gets 
rewarded (+0.6), otherwise it receives punishment (-0.6) [14]. 

Based on the selected action with exploration rate 0.01 and 
the reward value, the system is adapted by Kernel TD(λ) with 

0.9γ = . In our case, 0λ = is specially considered since our 
experiment performs single step updates per trial. Here, 
Gaussian kernel 

( )( )2 2( , ) exp 2x x x x hκ ′ ′= − −            (16) 

is used, and based on the distribution of squared distance 
between pairs of input states, kernel size 7h =  is applied. 
Also, stepsize 0.3η =  is selected based on [18] 

1

1.
[ ] ( ( ), ( ))N

j

N N
tr G x j x jϕ

η
κ=

< = =
∑

          (17) 

 The initial error is set to zero, and the first input vector is 
assigned as the first unit’s center.  

The performance is observed for 20 epochs (Figure 4). 

 
Fig. 4.  The change of success rates (up) and Q-values (down) by Kernel 
TD(λ). 

1
( )

0kI i =
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To observe the learning process, the predicted Q-values are 
displayed after each trial, and for each epoch, success rates 
are calculated (i.e. 1 epoch containing 43 trials). Notice how 
after 2 epochs Kernel TD(0) reaches around 100% success 
rate and the Q-values for the winning units become dominant 
after around 40 trials. 

To compare the performance between Kernel TD(0) and 
TDNN, the success rates over 50 implementations are 
measured, and the average learning curves show in Figure 5. 

 

 
Fig. 5.  The comparison of average learning curves from 50 
implementations between Kernel TD(λ) and MLPs. 

 
The solid line shows the average success rates and the 

dashed line shows the standard deviation of the performance. 
Since all the parameters are fixed over these 50 experiments, 
the confidence interval for Kernel TD(0) shows the effect of 
the random action selection for exploration, so the interval is 
narrow. However, with the TDNN a wider range of 
performance is observed, which supports the high 
dependence on initial values. From this result, we can confirm 
that Kernel TD(0) approach solves the issue of local minima 
on MLPs depending on the initializations. 

Moreover, Kernel TD(0) reaches around 100% success rate 
after 2 epochs. In contrast, the success rate of TDNN slowly 
increases and never reaches the same performance.  

VI. CONCLUSIONS AND FUTURE WORK 
A novel approach using stochastic gradient approximation 

(LMS) using the TD framework for the approximation of 
state-action value function Q in RL was applied to a 
center-out reaching task performed by a monkey. When 
compared to the TDNN, Kernel TD(0) showed better 
estimation of Q values along with performance improvements 
in terms of learning speed and smaller variance.  

One characteristic of Kernel TD(λ) is that the size of filter 
increases as input data comes in. Thus, further experiment 
will focus on the improvement to control the growing 
structures of Kernel TD(λ) and the influence of the eligibility 
trace λ on problems involving the estimation of sequential 
actions. 
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