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Abstract— Recording of maternal uterine pressure (UP) and
fetal heart rate (FHR) during labour and delivery is a procedure
referred to as cardiotocography (CTG). We model this as an
input-output system to estimate its dynamics in terms of an
impulse response function (IRF). CTG data is very noisy and
missing data are common. In this paper, we identify the models
using subspace methods, which incorporate noise-suppression
and permit the use of non-contiguous data. Using contiguous
data, the subspace method performed better than linear regres-
sion; more of the 57 CTG pathological records in our database
were modelled (30 vs. 26). Allowing non-contiguous data, even
more pathological records were modelled with this approach
(49). Furthermore, the models were discriminating; compared
to linear regression, the IRF gain showed statistically significant
differences more often between normal and pathological records
(in 15/18 vs. 10/18 epochs) over the final three hours of labour.

I. INTRODUCTION

Labour and delivery is routinely monitored electronically
with sensors that measure maternal uterine pressure (UP) and
fetal heart rate (FHR), a procedure referred to as cardiotocog-
raphy (CTG). Temporary decreases in FHR are known as
decelerations and reflect events such as compression of the
umbilical cord by uterine contractions, malfunction of the
fetal heart muscle, or premature separation of the placenta.
Generally, larger insults are indicated by recurring episodes
of deep, long decelerations whose onsets occur late with
respect to the uterine contractions. We extract information
from UP-FHR by treating the pair as an input-output system
using system identification to estimate system dynamics in
terms of an impulse response function (IRF).

A significant challenge to such modelling is that CTG
often contains intervals of missing data on the UP or FHR
signals. Signals with non-contiguous intervals were ignored
in previous studies using non-parametric linear regression,
which is inapplicable to such data [1], [2]. The main objec-
tive of this study was to extract more information from the
measured signals by processing this imperfect data.

We achieved these goals by applying subspace methods to
this system identification problem. Modelling of contiguous
data this way was more successful than with linear regres-
sion; when applied to non-contiguous data, both the epochs
modelled and the CTG recordings having models increased
further. Using a database of CTG recordings labelled by
outcome data available after birth, we compared the models
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over the final three hours of labour and with respect to their
outcome classes (either normal or pathological) and found
that the IRF gain was more consistently discriminating,
compared to models from linear regression.

These findings have direct clinical significance. Increasing
the number and amount of recordings amenable to analysis
with a discriminating technique has the potential to warn
clinicians on more cases and earlier on when intervention
could potentially avert the pathological outcome.

II. METHODS

A. Data

We used a database consisting of 111 intrapartum CTG
recordings for pregnancies having a birth gestational age
>36 weeks and having no known genetic malformations and
having a minimum of 3 hrs. of recording.

Each recording was labelled by outcome according to its
arterial umbilical-cord base deficit and neonatal indications
of neurological impairment. An elevated base deficit (BD)
measurement is an important indicator for metabolic acidosis
of sufficient degree to cause neurological injury [3], [4].
The recordings consisted of approximately equal numbers
of cases labelled normal (54 cases: BD < 8 mmol/L) and
severely pathological (57 cases: BD ≥ 12 mmol/L, accom-
panied by either death or evidence of hypoxic ischemic
encephalopathy). This proportion of pathological cases is
much higher than their natural incidence.

The CTG was acquired from fetal monitors used clinically.
The FHR was reported at a uniform sampling rate of 4 Hz
while the UP was acquired at 1 Hz and up-sampled to 4 Hz.
In the majority of cases, the UP or FHR sensors were external
(attached to the maternal abdomen); the UP was acquired by
tocography and the FHR was acquired from an ultrasound
probe. Otherwise they were acquired internally via an intra-
uterine (IU) probe and/or a fetal scalp electrode.

UP(t)

Preprocessing,

20-min Epoch 

Subspace

System 

Identification

Validation

Filtersf

u ĥ

d,s

FHR(t)

Fig. 1. Overall block diagram. Preprocessing cleans and segments the UP
and FHR into epochs of input u and output f. Subspace system identification
computes an IRF and estimates the best delay d and scale s. The resulting
models ĥ must pass the validation filters to be considered valid.
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B. Overall processing
We modelled UP-FHR system dynamics by linear system

identification, as shown schematically in Fig. 1. A prepro-
cessing step cleaned and segmented the UP and FHR into 20
min epochs of input and output data (u and f). Next, using
subspace system-identification methods, we estimated the
IRF ĥ and determined the best values for the IRF delay d and
scale s. Finally, the models were validated using a continuous
second-order parametric fit of the IRF and surrogate testing.

C. Preprocessing
The FHR and UP signals may be temporarily interrupted

by loss of sensor contact. Because of these gaps in the signal,
detrending by standard FIR filtering was not used. Instead
for each 20 minute epoch, the very low frequency content of
each signal (offset and long-term trend) was estimated and
subtracted using a low-order (p=3) Chebyshev polynomial
approximation. Epochs were advanced by 10 min increments.

D. Linear model
Let the input, UP, and output, FHR, at time sample k (k =

1 . . .N) be denoted by u(k) and f (k), respectively. The linear
response f (k) of a discrete-time system to an arbitrary input
signal u(k) is given by the convolution sum:

f (k) =

d+M−1∑
i=d

(hi∆t)u(k − i) = h ∗ u(k) (1)

where ∆t is the sampling period, and h is the IRF beginning
at delay sample d, and of length M. u(k) is the length-M
vector of input samples [uk−d−M+1 . . . uk−d−1 uk−d] used to
compute f (k) at sample k. For causal (physically realizable)
systems, d ≥ 0, but under certain conditions, such as input
measurement delay, d may be negative [5].

E. Subspace method
A previous study directly estimated h above using linear

regression and the pseudo-inverse of the input autocorrelation
matrix [1]. This approach assumed contiguous input and
output data (i.e., with gaps no greater than 15s in length).
However, we wanted to relax this requirement in order to
permit processing more of the data, which often included
temporary gaps of longer duration.

Subspace methods are well-suited to this problem because
they permit such non-contiguous data to be included in the
estimation. In addition, they are very applicable to noisy
data, such as CTG, because of their general noise model
and inherent use of singular value decomposition (SVD)
within a non-iterative, regression-based estimation. As well,
by incorporating an estimate of initial state, all epoch data are
used in subspace model estimates; data need not be discarded
due to initial filter-length effects. Finally, they require very
few tuning parameters apart from a scaling factor s.

The PO-MOESP subspace method [6] is based on a
state-space input-output model that incorporates process and
measurement noise, written in innovation form as:

x(k + 1) = Ax(k) + Bu(k) + Ke(k)
f (k) = Cx(k) + Du(k) + e(k) (2)

where x(k) is the state, the innovation e(k) is a white-noise
sequence and K is the Kalman gain. Whereas direct use of
Kalman filter methods require matrices A, B, C and D to be
specified, these parameters and the initial state x(0) are all
estimated by subspace methods. We used the LTI-Toolbox [7]
implementation of PO-MOESP for our single-input, single-
output (SISO) state-space model estimates.

This avoids direct estimation of h and the need for length-
M contiguous data as in (1), but h is available indirectly as

h(k) =


0 k < 0
D k = 0

CAk−1B k > 0
(3)

We found that using no direct feedthrough term (i.e., con-
straining D=0) produced the most consistent models with
the best fidelity on the output prediction, as measured by the
minimum description length (MDL).

The order r (i.e., the state-vector dimensionality) of the
state-space model was selected by inspecting the most sig-
nificant eigenvalues of the system matrix A. By experimen-
tation, we found that regardless of the value of the maximum
order s we provided, a system order r = 2 generally produced
models with the best fidelity. This finding was consistent with
a previous study that fitted a second-order continuous low-
pass system to the IRF [8].

By varying s over selected values 2 j, j = 3, 4, . . . 7, we
produced multi-resolutional models that adapted to the time
constants of the system. If model estimation at s = 2 j failed,
we continued the procedure with s = 2 j+1, up to jmax.

F. Delay detection

As described in [1], input measurement delay associated
with the UP sensor may result in a negative IRF delay. In
contrast, the physiological response is expected to have a
positive delay. The combination of these two delays can
produce an FHR response that occurs before (negative d)
or after (positive d) the measured UP contraction onset.
Therefore, we developed an algorithm to determine the best
d for each epoch. We set the bounds on d to ± 80 s.

We searched for delays corresponding to the zero-
crossings of a Chebyshev approximation of the first IRF
lag h1(d). Due to the periodicity of h1(d) there were often
multiple such zero-crossings. We ranked these candidates
according to their MDL and used them to smooth the epoch-
to-epoch delay estimates using a median filter and nearest-
neighbour approach, as described in [1].

G. Fitting a low-pass second-order parametric model

To reduce the parametrization even further, we fitted the
resulting impulse-response function to a continuous second-
order low-pass system, as described in [8]:

ĥp = f (G, ζ, ωn, d), d = {dmin . . . dmax} (4)

where ζ = damping factor, ωn = undamped natural frequency,
G = gain and d = delay. We accepted models at this stage
(Fit2) if the VAF of the IRF fit was > 90%.
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Normal Pathological
UP continuity 94.9% 84.8%
FHR continuity 89.7% 78.9%

TABLE I
Continuity levels for the input UP and output FHR signals

H. Validating models using surrogate data

In order to be confident that the resulting model captured
system dynamics rather than noise, we also estimated models
on a set of surrogate FHR signals. In [1] we used the ampli-
tude adjusted Fourier transform (AAFT) method to generate
surrogates from contiguous data. For the non-contiguous data
of this study, however, we used the more general approach
of simulated annealing.

In simulated annealing [9], samples are randomly swapped
and a cost function E determines whether the interchange is
accepted. E was set to the sum of squared differences be-
tween the auto-correlation functions of the original FHR and
the surrogates. If the surrogate FHR more closely matched
the original (∆E < 0), the swap was accepted. Otherwise
it was accepted with probability p = e−∆E/T . The samples
were first fully randomized and T was set to a high value.
In subsequent iterations, T was gradually lowered so that p
reduced towards zero until E converged.

The gap locations in the surrogates were fixed to those in
the original; gaps were excluded from swapping but included
in the auto-correlation function on the assumption that they
had equal influence on the cost function. In order to allow
more variability in the surrogates, rather than fixing the gap
data to a constant as suggested in [9], we randomized gap
values over the range of the signal just before and after
the gap. To speed up calculations, we limited the length of
the autocorrelation function to 256 samples (a conservative
upper bound on the first zero crossing, as determined by
preliminary experimentation) and used the approach of [10]
to re-calculate only those terms of the auto-correlation that
were changed by the swap.

Despite these optimizations, the processing load was high
so we limited generation to 3 surrogate FHRs and accepted
the model if the fidelity of the model with the original
FHR was greater than all of the models generated from the
surrogate data. This gave a confidence level of 75% that a
model capturing spurious dynamics would be rejected.

III. RESULTS

A. Continuity levels

Table I shows the overall average levels of UP and FHR
continuity in our CTG database. While both UP and FHR are
affected by sensor contact problems, continuity was lower
for FHR, likely because Doppler FHR detection is prone
to maternal heart rate interference. Continuity was lower in
pathological compared to normal records, consistent with the
clinical reality that these cases undergo more intervention.

Regression Subspace Subspace
Continuous data yes yes no
Validation method AAFT AAFT Fit2/Annealing
Epochs with models 455 464 874
Epochs validated 188 (41.3%) 231 (49.8%) 392 (44.9%)
Records with models 43 43 56
Records validated 26 (60.5%) 30 (70.0%) 49 (86.0%)

TABLE II
Comparison of overall processing using linear regression and subspace

algorithms for system identification (pathological cases)

B. Processing summary

The results of the processing shown in Table II are limited
to pathological records because better processing of these
cases have more potential to improve detection of pathology.

We first processed contiguous data with the subspace
approach, using AAFT surrogates for validation, and com-
pared the overall results to those obtained using linear
regression [1]. For the 43 records having models in at least
3 epochs, 30/43=70.0% of these records had models that
passed the validation, compared to 26/43=60.5% records
with the linear regression approach. The subspace approach
produced models for a slightly higher number of epochs
overall, but a greater proportion of these passed the validation
step (231/464=49.8% vs. 188/455=41.3%). These results
indicate that for identical signals, the subspace approach
created useful models more often than the previous approach,
permitting 4 more pathological cases to be considered.

Next we included non-contiguous data from the records
and applied the subspace approach using simulated annealing
surrogates for validation. Compared to the subspace results
with contiguous data, 13 more records had a least three
models (56 vs. 43). Of these records, a higher number (49)
had models that passed the validation step and the percent
of records validated increased to 49/56=87.5%. The overall
number of epochs with models increased to 874, indicating
that modelling had occurred in the non-contiguous data.
With the reduced signal quality presented to the subspace
algorithm and the use of the simulated annealing validation,
the proportion of validated models also decreased slightly to
392/874=44.9%. Results from normal records were similar:
407 epochs had validated models and 52/54 records had at
least 3 epochs with validated models.

C. IRFs of typical epochs

Fig. 2 shows the preprocessed UP and FHR, the IRF, and
the model-predicted FHR for an epoch from a pathological
case with non-contiguous signal using original and surrogate
FHR. With the original FHR, the IRF delay d was 11.0
s and the gain G was -0.651 bpm/mmHg. The variance
accounted for (VAF) [1] of this model was 59.7%. The VAF
of the model using surrogate data was lower (37.2%), as
were models generated from the other surrogate FHR, so
this model passed validation. The predicted FHR using in-
terpolated contiguous UP showed a predicted (and plausible)
deceleration in missing FHR.
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(a) Measured FHR
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(b) Surrogate FHR

Fig. 2. a) Example UP (green) and FHR with numerous discontinuities (blue circles) for a pathological case. The predicted FHR is shown in red and
the (preprocessed) measured FHR in black. The residual error r is shown in the third panel. The fourth panel shows the predicted FHR using interpolated
contiguous UP showing a predicted deceleration in missing FHR. The IRF model is shown in the fifth panel. The model parameters were: VAF=59.7%,
delay d=11.0 s, and gain G=-0.651 bpm/mmHg. b) The same epoch with surrogate FHR. A model was estimated, but it had much lower VAF (37.2%).
The units of FHR and UP are beats per minute (bpm) and mmHg, respectively. All horizontal time axes have units of seconds.

D. IRF parameters by class

Figure 3 shows class average results for gain G. Overall
both classes had trends towards larger negative G over
time. Pathological cases had larger negative G. There were
statistically significant class differences in 15/18 epochs (blue
asterisks). We used the Kolmogorov-Smirnov distribution
test, rejecting the null hypothesis at p < 0.05. These dif-
ferences were more consistent than with linear regression,
where 10/18 epochs were statistically significant [2]. Delay
d and the damping factor ζ also had differences (not shown),
but only in the last few epochs (d) or intermittently (ζ).
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Fig. 3. IRF gain G over the last 180 min of labour for normal (black) and
pathological (red) cases. The blue asterisks indicate statistically significant
differences (p < 0.05) between the two classes for that epoch.

IV. DISCUSSION

From the previous work [2], we expect to see more dis-
crimination from the IRF delay parameter. In future studies
we will prefer models with higher values of the scale s
because they capture longer (and clinically more significant)
FHR responses. This should reduce the estimate variance that
may have obscured class differences in this parameter. It is
also possible that with successfully modelling of many more
pathological records than before, the delays of these cases
fall into more than one sub-population of pathology.

These results demonstrate that subspace system identifi-
cation extracted more CTG information, allowing analysis
of more recordings, especially of the important pathological
cases. Since these recordings tend to be noisier and have
lower continuity than normal CTG (see Table I) the subspace
approach is very suitable. As well, given the very promising
discrimination results of the IRF gain, in future studies we
expect to use model parameters in the detection of fetal
pathology (hypoxia) during labour and delivery.
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