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Abstract— Surgery, and specifically, tumor resection, is the
primary treatment for most patients suffering from brain tu-
mors. Medical imaging techniques, and in particular, magnetic
resonance imaging are currently used in diagnosis as well as
image-guided surgery procedures. However, studies show that
computed tomography and magnetic resonance imaging fail to
accurately identify the full extent of malignant brain tumors
and their microscopic infiltration. Mass spectrometry is a well-
known analytical technique used to identify molecules in a
given sample based on their mass. In a recent study, it is
proposed to use mass spectrometry as an intraoperative tool
for discriminating tumor and non-tumor tissue. Integration
of mass spectrometry with the resection module allows for
tumor resection and immediate molecular analysis. In this
paper, we propose a framework for tumor margin delineation
using compressive sensing. Specifically, we show that the spatial
distribution of tumor cell concentration can be efficiently re-
constructed and updated using mass spectrometry information
from the resected tissue. In addition, our proposed framework is
model-free, and hence, requires no prior information of spatial
distribution of the tumor cell concentration.

I. INTRODUCTION

According to recent studies [1], the incidence of primary
brain tumors worldwide is estimated to be 7 out of every
100,000 people, with the most common type being glioma.
The World Health Organization (WHO) classifies neoplasms
(abnormal tissue mass resulting from the abnormal prolifera-
tion of cells) based on the hisopathological evaluation, where
visual assessment of microscopic appearance of the tumor
sample plays a central role [2], [3]. Gliomas are classified
into different types and grades based on proliferation, cellular
and nuclear morphology, and vascularization, among other
factors [4]. Identification of the tumor type and grade is
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of fundamental importance both for treatment and prognosis
assessment [2].

Surgery, and specifically, tumor resection, is the primary
treatment for most patients suffering from brain tumors. The
aggressive nature of malignant gliomas is underlined by
its preferential infiltrative characteristic of glioma cells into
the white matter fiber tracts posing a significant challenge
to neurosurgery [5–7]. While the extent of resection is an
important factor in glioma prognosis [8], [9], the primary
challenge is to preserve the functionality of the cortex
and white matter as the result of the resection [10–12].
Visual distinction of tumor tissue from the surrounding brain
parenchyma is challenging and increases the complexity of
the problem even further.

Medical imaging techniques, and in particular, magnetic
resonance imaging (MRI), are currently used in diagnosis as
well as image-guided surgery procedures. However, studies
show that computed tomography (CT) and MRI fail to
accurately identify the full extent of malignant brain tumors
and their microscopic infiltration [7], [13], [14]. In addition,
brain shift induced by surgical intervention and anesthesia in-
troduces spatial inaccuracy in pre-operative imaging studies
[15]. This signifies the need for an intraoperative procedure
which allows microscopic inspection of the brain tissue in
real-time.

Mass spectrometry (MS) is a well-known analytical tech-
nique used to identify molecules in a given sample based on
their mass. In [7], [16], the authors propose to use MS as an
intraoperative tool for discriminating tumor and non-tumor
tissue. Specifically, in [16] the authors show that different
grades of astrocytoma (a common type of glioma) can
be differentiated based on their mass spectra. One specific
method of MS, referred to as desorption electrospray ioniza-
tion mass spectrometry (DESI-MS), performs the analysis
in the ambient environment and does not require sample
preparation, and hence, is an ideal candidate for real-time
intraoperative MS and tissue imaging [7], [17].

Integration of MS with the resection module allows for
tumor resection and immediate molecular analysis. This
provides the surgeon with important information regarding
tumor type and grade as well as tumor cell concentration in
real-time and can specifically assist the surgeon in identifying
the tumor boundary. As a result, efficient algorithms need
to be developed for tumor type and grade prediction as
well as tumor cell concentration estimation from resected
tissue. Preliminary studies have shown promising results for
using machine learning techniques for tumor classification
and tumor cell concentration estimation based on MS data
[18], [19].

In this paper, we propose a framework for tumor margin
delineation using compressive sensing [20–24]. Specifically,
we show that the spatial distribution of tumor cell con-
centration (ranging from 0 to 100%) can be efficiently
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reconstructed and updated using MS information from the re-
sected tissue. In addition, our proposed framework is model-
free, and hence, requires no prior information of spatial
distribution of the tumor cell concentration. The estimated
spatial distribution of tumor cell concentration can be used
for a more accurate tumor margin delineation as compared
to current practice [25].

The outline of the paper is as follows. In Section II,
we briefly review the compressive sensing problem and its
solution. Next, in Section III, we discuss the tumor margin
delineation and show that analyzing the resected tissue can
be used to generate a more accurate estimate of the tumor
cell concentration. In Section IV, we provide a numerical
example. Finally, we state conclusions and directions for
future work in Section V.

II. A BRIEF REVIEW OF COMPRESSIVE SENSING

In this section, we briefly review the compressive sensing
framework for discrete signals. For a comprehensive treat-
ment of the subject, see [20–24]. The notation used in this
paper is fairly standard. Specifically, card(S) denotes the
cardinality of a set S ⊂ Cn, and Z+, R, and C denote the
set of positive integers, real numbers, and complex numbers,
respectively. For a given matrix A ∈ Cm×n, m,n ∈ Z+,
A∗ denotes the complex conjugate transpose of A and AΩ ∈
Cm×p, p ∈ Z+, denotes the column submatrix of A indexed
by Ω ⊂ {1, . . . , n}, where card(Ω) = p. In addition, v is
the complex conjugate of v ∈ C, ‖x‖1 denotes the ℓ1-norm

of x ∈ Cn defined by ‖x‖1 ,
∑n

i=1 |xi|, where xi denotes
the ith component of x, 〈x, y〉 denotes the standard Eulerian

inner product of x, y ∈ Cn, defined by 〈x, y〉 , ∑n

i=1 xiyi,
and In denotes the n× n identity matrix.

Compressive sensing (also referred to as compressive
sampling) is concerned with the approximation of a signal
given a small number of measurements characterized by a
set of inner products. The following definition is needed for
introducing the compressive sensing problem.

Definition 2.1 ([20]): Given x = [x1, . . . , xn]
T ∈ Cn,

n ∈ Z+, x is s-sparse if card(supp(x)) ≤ s, where

s ∈ Z+ and supp(x) , {i ∈ Z+ : xi 6= 0}. Given

Φ , [φ1, . . . , φn] ∈ C
n×n and Ψ , [ψ1, . . . , ψn] ∈ C

n×n

such that Φ∗Φ = In and Ψ∗Ψ = In, the mutual coherence
µ(Φ,Ψ) is defined by

µ(Φ,Ψ) , max
k,j∈{1, ..., n}

|〈φk, ψj〉|. (1)

Note that the mutual coherence µ(Φ,Ψ) satisfies the
inequality 1√

n
≤ µ(Φ,Ψ) ≤ 1.

Compressive Sensing Problem ([22], [24]). Let f ∈ C
n,

n ∈ Z+, denote an unknown vector and assume f = Ψx,
where {ψ1, . . . , ψn} denotes the orthonormal sparsity basis,

ψi ∈ Cn, i = 1, . . . , n, Ψ , [ψ1, . . . , ψn] ∈ Cn×n,
Ψ∗Ψ = In, and x ∈ Cn is s-sparse for some s ∈ Z+. The
Compressive Sensing Problem involves recovering f given
the measurements y , [y1, . . . , ym]T ∈ Cm, where

yk = 〈f, φik 〉, k = 1, . . . , m, m ∈ Z+, m < n, (2)

or, equivalently,

y = Ax, A , Φ∗
ΩΨ, (3)

where Ω , {i1, . . . , im} ⊂ {1, . . . , n}, card(Ω) = m,
{φ1, . . . , φn}, φi ∈ Cn, i = 1, . . . , n, denotes a given

orthonormal sensing basis, and Φ , [φ1, . . . , φn] ∈ C
n×n

is such that Φ∗Φ = In.

The following theorem presents a non-uniform recovery
result for the Compressive Sensing Problem. Specifically,
for a given fixed sparse vector x ∈ Cn, the probability
of recovering x from a random set of measurements is
quantified by the following theorem. For the statement of
the theorem recall that sgn(v) , v/|v| for v 6= 0, and

sgn(0) , 0.

Theorem 2.1 ([24]): Consider the Compressive Sensing
Problem and assume E , {ǫi}si=1 ⊂ C is a sequence
constructed by uniformly randomly sampling the set {z ∈
C : |z| = 1} and {sgn(xi)}i∈supp(x) = E . If

m ≥ ck2s ln2
(

6n

ε

)

, (4)

where c > 0 and k ≥ √
nµ(Φ,Ψ), and µ(Φ,Ψ) is defined

as in (1), then with a probability exceeding 1 − ε, x is the
unique solution to the convex ℓ1-minimization problem given
by

min
x̃∈Cn

‖x̃‖1, (5)

subject to y = Ax̃, where y , [y1, . . . , ym]T ∈ Cm, and
yk, k = 1, . . . , m, is given by (2).

Remark 2.1: While in many practical applications the
sensing basis {φ1, . . . , φn} is imposed by the governing
physical laws or physical constraints of the measurement
acquisition device, we usually have the freedom to choose
the appropriate sparsity basis. The choice of the sparsity
basis should be such that f can be sparsely represented
in that basis as well as the pair (Φ,Ψ) possesses a small
mutual coherence. The sparsity of the representation and the
mutual coherence of the pair are reflected by s and µ(Φ,Ψ),
respectively. From (4) it is clear that a high sparsity (i.e.,
small s) as well as a low mutual coherence (i.e., small
µ(Φ,Ψ)) would result in a higher chance of success for
recovering f from fewer measurements. An example of basis
with minimum mutual coherence is the Fourier basis and the
canonical basis in C

n, with a mutual coherence of 1√
n

. For

further details, see [22].

Remark 2.2: Note that many signals of practical interest
(e.g., images) are not sparse when represented in some basis
but can be efficiently approximated by an s-sparse signal.
Such an approximation involves keeping the s largest coeffi-
cients and setting the rest to zero. The signal reconstruction
framework discussed in Theorem 2.1 has bounded error for
such compressible signals [20], [21].

The ℓ1-minimization problem given in Theorem 2.1 is
referred to as the basis pursuit problem and has received con-
siderable attention in the literature [26]. In addition, efficient
numerical methods have been developed in the literature
for solving the ℓ1-minimization problem; most notably the
gradient projection for sparse reconstruction (GPSR) method
[27].

III. TUMOR MARGIN DELINEATION

In this section, we propose a framework for tumor margin
delineation using compressive sensing. Here, we assume that
a reliable method for estimating tumor cell concentration
from MS data is already established. As noted in the Intro-
duction, preliminary studies have shown promising results
for tumor cell concentration estimation using MS [19].

To elucidate our approach, define the tumor cell concen-
tration function T : D → [0, 1] representing the spatial
distribution of the tumor cell concentration, where T (u)
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denotes the tumor cell concentration at location u ∈ D
with 0 and 1, respectively, representing no tumor cell
concentration and maximum tumor cell concentration, and
D ⊂ R3 denoting a region of interest in the brain which
contains the glioma. If an accurate estimate of the tumor
cell concentration function T (u) exists, tumor boundary can
be easily identified. Specifically, tumor boundary is given
by ∂R, where R , {u ∈ D : T (u) > 0}. Compressive
sensing can be used to estimate T (u), u ∈ D, based on the
measured value of tumor cell concentration in the resected
tumor tissue. Specifically, an accurate estimate of T (u) can
be found using a small number of measurements given by
the analysis of the resected tissue. This is extremely useful
for the neurosurgeon to rapidly identify the tumor boundary
location intraoperatively by performing a small number of
tissue resections.

The block diagram given in Figure 1 depicts how this
framework can be used in real-time. The neurosurgeon
identifies the location of the glioma based on medical
imaging data (typically MRI) as well as visual inspection
of the glioma site at the time of surgery and initializes the
tumor resection. The resected tissue is then analyzed using
MS and the data is subsequently analyzed by a computer
algorithm responsible for estimating the corresponding tumor
cell concentration of the resected sample. This estimate as
well as its location are recorded and used as measurements to
estimate the spatial distribution of tumor cell concentration
T (u), which is then used to estimate the tumor boundary
∂R. The neurosurgeon can use the updated estimate of the
tumor cell concentration function T (u) and the estimated
boundary in addition to other available data (e.g., MRI and
visual inspection) to continue the tumor resection.

MRI and
Visual Inspection

Tumor Margin
Delineation

Compressive
Sensing

Tumor Resection

Tissue Analysis

Mass SpectrometrySample Tumor

Cell Concentration

Fig. 1. Block diagram outlining the integration of tumor resection with
mass spectrometry for tumor margin delineation.

In order to numerically implement this framework, we
proceed with discretization of the domain D. Note that
approximating the tumor cell concentration function by a
discrete signal allows us to formulate the estimation prob-
lem as a discrete compressive sensing problem, where the
resulting convex optimization problem can be solved using
efficient numerical methods. Furthermore, medical imaging
techniques used either pre-operatively for assessment or
during surgery involve discrete data which can be easily
integrated with a discrete representation of spatial distribu-
tion of tumor cell concentration. Finally, tissue resection and
analysis is performed in small discrete pieces, which can be
effectively modeled by a discrete representation.

Let Ds ⊂ R3 denote the sampled domain, where we use
an n1 × n2 × n3 grid to sample D with ni, i = 1, 2, 3,
denoting the number of grid points in the ith coordinate.
In addition, let f ∈ Rn, n = n1n2n3, denote the vector
obtained by sampling the tumor cell concentration function
T (u) using the sampling grid Ds and column stacking the

resulting sampled values. Our goal is to estimate f given
measurements of tumor cell concentration in the resected
tissue. Here, we assume that there exists a sparsity basis
{ψ1, . . . , ψn}, ψi ∈ Cn, i = 1, . . . , n, such that f = Ψx,
where Ψ = [ψ1, . . . , ψn] ∈ Cn×n, x ∈ Cn, and x is s-
sparse for some s ∈ Z+. Note that we do not require any
a priori knowledge of f except for the fact that f can be
sparsely represented in the sparsity basis.

While we have the advantage of selecting a specific
sparsity basis (e.g., wavelets and Fourier series) which best
represents f , the choice of the sensing basis is dictated by
the measurement mechanism. Specifically, for the application
discussed in this paper, the sensing basis is the canonical
basis in Cn (corresponding to Dirac delta functions or
spikes). This choice becomes more apparent as we note that
tumor tissue resection and analysis is performed on 1×1×1
cubes (analogous to voxels in medical imagery).

More specifically, we assume that the dimension of the
discretization grid is chosen such that tissue resection and
analysis can be performed on each “voxel.” As a result,
measuring the tumor cell concentration for a given set of
resected voxels is equivalent to evaluating the inner products

yk = 〈f, eik〉, k = 1, . . . , m, m ∈ Z+, m < n, (6)

or, equivalently,

y = ΨΩx, (7)

where y , [y1, . . . , ym]T ∈ Cm, ei is the ith column of In,

Ω , {i1, . . . , im} ⊂ {1, . . . , n}, denotes the set of indices
corresponding to the location of the resected voxels, and
card(Ω) = m. Finally, note that using Theorem 2.1, tumor

cell concentration can be estimated using f̃ = Ψx∗, where

f̃ is the estimated value of f and x∗ is the solution to (5)
subject to y = ΨΩx̃. Furthermore, we need O(k2s ln2(6n))
measurements to recover f with a high probability, where
k ≥ √

nµ(In,Ψ).

IV. NUMERICAL EXAMPLE

In this section, we present a numerical example to demon-
strate the efficacy of the proposed compressive sensing
framework. For simplicity of exposition, we consider the
two-dimensional problem of estimating T (u), u ∈ D, where
D ⊂ R2. For this example, the unknown tumor cell con-
centration function is given by the sum of two Gaussian

functions, namely, T (u) = exp
(

−(u1−25)2

200 − (u2−25)2

450

)

+

1
2exp

(

−(u1−10)2

98 − (u2−30)2

200

)

. Here, f ∈ R2500 is

a vector formed by sampling the tumor cell con-
centration function T (u) by a 50 × 50 grid given
by {(i, j) : i ∈ {1, . . . , 50}, j ∈ {1, . . . , 50}} and column
stacking the sampled values. In this example, we choose the
sparsity basis to be the Fourier basis and assume that f can
be accurately approximated by a sparse vector in this basis.
The discretized tumor cell concentration function is given in
Figure 2.

The tumor resection and analysis process is initialized
by considering a circular region close to the middle of the
tumor centered at (25, 25) with a radius of 6. It is assumed
that identifying this region for the neurosurgeon is possible
using medical imagery and visual inspection. The tumor cell
concentration from the resected tissue is used to generate an
initial estimate of the tumor cell concentration. Next, tumor
tissue with concentration higher than 0.55 is resected and the
corresponding tumor cell concentration of the resected tissue
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is used for updating the tumor cell concentration function.
This resection-estimation cycle is performed by resecting
tumor tissue with concentration higher than 0.5, 0.45, . . .
until the resection reaches the tumor boundary.

In order to solve the ℓ1-minimization problem, we used
CVX [28], a MATLAB toolbox for solving convex opti-
mization problems. The ℓ2-reconstruction error for the 5
iterations were 8.3, 7.35, 5.04, 3.73, and 3.12. This signifies
the fact that the information provided by new measurements
(i.e., resections) leads to a better estimate of the tumor cell
concentration. The estimated tumor cell concentration after
5 iterations is given in Figure 3.

Fig. 2. The unknown discretized
tumor concentration function.

Fig. 3. The estimated tumor con-
centration function after 5 iterations.

V. CONCLUSION

In this paper, we proposed a framework for tumor mar-
gin delineation using compressive sensing. We showed that
the spatial distribution of tumor cell concentration can be
efficiently reconstructed and updated using MS information
from the resected tissue. In addition, our proposed framework
is model-free, and hence, requires no prior information of
spatial distribution of the tumor cell concentration. The
estimated spatial distribution of tumor cell concentration can
be used for a more accurate tumor margin delineation as
compared to current practice. Future work includes applying
this framework to clinical data and assessing the sensitivity
of this framework to measurement noise.
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