
  

 

Abstract—In this paper we introduce a dynamical model for 

Phonocardiogram (PCG) signal which is capable of generating 

realistic synthetic PCG signals. This model is based on PCG 

morphology and consists of three ordinary differential 

equations and can represent various morphologies of normal 

PCG signals. Beat-to-beat variation in PCG morphology is 

significant so model parameters vary from beat to beat. This 

model is inspired of Electrocardiogram (ECG) dynamical 

model proposed by McSharry et al. and can be employed to 

assess biomedical signal processing techniques. 

 

  

I. INTRODUCTION 

honocardiogram (PCG) signal contains valuable 

information about electromechanical activity of 

human’s heart as it provides a quantitative and 

graphical representation of the heart sounds. There are two 

dominant and audible components of heart sounds, namely 

S1 and S2, and in some cases two more components, S3 and 

S4, and murmurs. These sounds are due to opening and 

closure of heart valves and also are a consequence of 

turbulent blood flow and vibrating cardiovascular structures. 

Some attempts have been made in recent years on modeling 

and synthesizing PCG signals. In general, these models can 

be divided in two groups: statistical and mathematical 

models. Statistical models are based on statistical properties 

of PCG, such as higher order spectra [1], [2]. The main 

drawback of the statistical models is that they ignore signal 

morphology. Therefore, they cannot be used for synthesizing 

realistic signals. In contrast, mathematical models are based 

on signal morphology and try to represent PCG time and 

frequency characteristics (e.g. [3], [4], [5]). In some other 

works, matching pursuit algorithm is used for analysis and 

synthesis of the phonocardiogram, but no explicit models are 

proposed [6], [7], [8].  

In 2003, McSharry et al. [9] introduced an appropriate 

dynamical model for Electrocardiogram (ECG) signal based 

on its morphology which is capable of generating synthetic 

ECG signals. Lack of a dynamical model for generating 

artificial PCG signal and inspired by McSharry’s model for 
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ECG we propose a dynamical model for PCG signal with 

ability of generating synthetic signal. 

 This paper is organized as follows. In Section ΙΙ the ECG 

dynamical model proposed by McSharry et al. is reviewed 

briefly. PCG morphology and proposed dynamical model 

are discussed in Section ΙΙΙ and investigated in Section ΙV. 

Section V concludes and discusses the future works for 

which the proposed dynamical model may be useful. 

 

  

II. REVIEW OF ECG DYNAMICAL MODEL 

In 2003, McSharry et al. proposed a dynamical model for 

generating realistic synthetic ECG signal using a set of state 

equations that generates a three-dimensional (3-D) trajectory 

in a 3-D state space with coordinates (x, y, z). The model 

consists of a circular limit cycle of unit radius in the (x, y) 

plane around which the trajectory is pushed up and down as 

it approaches the P, Q, R, S and T points in the ECG. Quasi-

periodicity of the ECG is reflected by the movement of the 

trajectory around the attracting limit cycle. The dynamical 

equations of motion are given by a set of three ordinary 

differential equations in Cartesian coordinates: 
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 ,atan2 y x   is the four quadrant arctangent of the 

elements of x and y, ranging over [−π, π], and   is the 

angular velocity of the trajectory as it moves around the 

limit cycle, and is related to the beat-to-beat heart rate as 

𝜔 = 2𝜋𝑓. The baseline wander of the ECG is modeled with 

the parameter 𝑧0 that is assumed to be a relatively low 

amplitude sinusoidal component coupled with the 

respiratory frequency 𝑓2 using 
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where 0.15 mVA  . 

By neglecting the baseline wander term  𝑧 − 𝑧0  in (1), 

and integrating 𝑧  equation, it can be seen that each 

component of the ECG waveform is modeled with a 

Gaussian kernel which has three parameters 𝜃𝑖 , 𝑎𝑖 , 𝑏𝑖 . 

Values of the model parameters (𝜃𝑖 , 𝑎𝑖 , 𝑏𝑖) for each ECG 

beat can be obtained by fitting a curve made of sum of five 

Gaussian kernels to it. Typical values of these parameters for 

the P, Q, R, S and T points taken from [9] are shown in 

Table 1. The times and angles are relative to the position of 

the R-peak since it is always assumed to have zero phase and 

the ECG contents lying between two consecutive R-peaks 

are assumed to have a phase between 0 and 2𝜋 (or −𝜋 and 

𝜋). Thus, the phase signal 𝜃 is available by simply detecting 

the R-peaks.  

The dynamic state equations proposed by McSharry et al. 

can also be written in polar coordinates as follows [10]: 
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Above the ia  term in (1) are replaced with: 
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where 𝛼𝑖  are the peak amplitude of Gaussian kernels used 

for modeling each component of the ECG.  

These new set of equations have some benefits compared 

to (1). The first equation in (3) shows the circular behavior 

of the generated trajectory by the model, which for any 

initial value of 𝑟 ≥ 1 reaches to a steady state of 𝑟 = 1 

representing the limit cycle. The phase parameter 𝜃 has an 

explicit representation and indicates the angular location of 

the P, Q, R, S and T waves (Table 1). On the other hand, the 

second and third equations in (3) are independent from 𝑟, 

making the first equation redundant. Therefore the first 

equation may be excluded as it has no effect on the synthetic 

ECG. 

 

 
TABLE 1 

TYPICAL PARAMETERS OF THE SYNTHETIC ECG MODEL [9] 
 

Index (i) P Q R S T 

Time (secs) -0.2 -0.05 0 0.05 0.3 

i
 (radians) −

𝜋

3
 −

𝜋

12
 0 

𝜋

12
 

𝜋

2
 

i
a  1.2 -5 30 -7.5 0.75 

i
b  0.25 0.1 0.1 0.1 0.4 

 
Fig. 1.  A phonocardiogram signal from a healthy person, containing the 

first heart sound (S1) and the second heart sound (S2). 

 

III. PCG MODEL DESCRIPTION 

A. Phonocardiogram Morphology 

As mentioned before, a PCG beat consists of two distinct 

sounds, S1 and S2, sample waveforms of which are depicted 

in Fig. 1. Waveforms of heart sounds vary from subject to 

subject and beat to beat in amplitude, number of peaks and 

troughs, and spread in time. With all these differences, still 

there are some analogies among all waveforms. A closer 

look at the waveforms suggests the idea of damped 

sinusoids, since the frequency of vibration is almost constant 

along their waveforms. Besides, two or more Gaussian 

functions can model their envelope shapes. Hence 

considering these properties, we use Gabor kernels for 

modeling heart sounds. Analysis of different heart sounds 

shows that two Gabor kernels can represent each heart 

sound, S1 and S2, and in sum one heart beat of PCG signal 

can be modeled with four kernels as follows; 
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where  𝛼𝑖  , 𝜇𝑖  , and 𝜎𝑖  are the amplitude, center and width 

parameters of the Gaussian terms, and 𝑓𝑖  , 𝜑𝑖  are frequency 

and phase shift of the sinusoid terms, respectively. 𝜃 is the 

independent parameter in radians which varies in the range 

 – 𝜋, 𝜋  for each beat. The −/+ superscripts indicate the two 

Gabor kernels which are used for modeling each heart 

sound. 

 

 

B. Phonocardiogram Dynamical Model 

Like McSharry’s model for ECG [9], the dynamic model 

for PCG generates a trajectory in a three-dimensional (3-D) 

state space with coordinates (x,y,z) that projection of the 3-D 

trajectory on (x,y) plane moves around a limit cycle of unit 

radius. Each revolution on this circle corresponds to one 

heart beat. Waveform of phonocardiogram signal is 

produced using the motion of the trajectory in the z 

direction. The dynamical equations of the trajectory of the 
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model are given by a set of three ordinary differential 

equations, 

 
Fig. 2.  Typical trajectory generated by the dynamical model (2) in the 3-D 

space given by (x,y,z). Each entire movement around this trajectory is 

equivalent to one heart beat. 
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where 𝜃 = 𝑎𝑡𝑎𝑛2(𝑦, 𝑥) is the four quadrant arctangent of 

the real parts of the elements of x and y, with (−𝜋 ≤ 𝜃 ≤ 𝜋) 

, and 𝜔 the angular velocity of the trajectory as it moves 

around the limit cycle and is related to beat-to-beat heart rate 

by 𝜔(𝑡) =
2𝜋

𝑅(𝑡)
 where 𝑅(𝑡) represents the time series 

generated by the RR-process using the ECG signal. 

Considering 𝜔 constant, and integrating the third equation in 

(6), we reach to equation (5). 

The equations of motion given by (6) are integrated 

numerically using a fourth-order Runge-Kutta method with a 

fixed time step ∆𝑡 = 1 𝑓𝑠  where 𝑓𝑠 is the sampling 

frequency of the synthetic PCG signal. Thus, both beat-to-

beat heart rate and sampling frequency of the synthetic PCG 

signal can be adjusted.     

A trajectory generated by (2) in three dimensions is 

depicted in Fig. 2. The 𝑧 variable of this trajectory, when 

plotted versus time, represents the synthetic PCG signal with 

realistic morphology (Fig. 3).  

There is a close relationship between events in 

electrocardiogram and phonocardiogram. For example, S1 

occurs slightly after R-peak in ECG. To extract heart beats 

from PCG, a robust approach is by means of simultaneously 

recorded ECG signal; the middle point of each R-to-R 

distances is considered as the ending point of the previous 

beat and starting point of next beat and so PCG beats 

become distinguishable. The phase signal 𝜃 for each PCG 

beat is the same phase signal of the synchronous ECG.  

PCG, in contrast to ECG, is less quasi-periodic and 

variation of PCG model parameters from beat to beat is 

significant and a little change in one parameter can probably 

generate an invalid heart sound waveform. So it is not 

convenient to represent these parameters by their mean 

values. But to give a visual perception of model parameters, 

Table 1 shows their mean values which are achieved by the 

analysis of normalized PCG of a healthy subject. 

 
TABLE 2 

MEAN VALUE OF THE PCG MODEL PARAMETERS GIVEN BY (2) 
 

Index (i) 𝑺𝟏− 𝑺𝟏+ 𝑺𝟐− 𝑺𝟐+ 

𝛼𝑖  0.4250 0.6875 0.5575 0.4775 

𝜇𝑖  (radians) 

𝜋

12
 

 

3𝜋

19
 

 

3𝜋

4
 

 

7𝜋

9
 

 

𝜎𝑖  0.1090 0.0816 0.0723 0.1060 

𝑓𝑖  10.484 11.874 11.316 10.882 

𝜑𝑖  (radians) 

3𝜋

4
 

 

9𝜋

11
 

 

7𝜋

8
 

 

3𝜋

4
 

 

 

 

IV. RESULTS 

Synthetic heart sound waveform for one heart beat section 

is illustrated in Fig. 3. Observational uncertainty is 

considered by adding White Gaussian Noise to synthetic 

signal, yielding a similar signal to a section of real PCG 

from a normal human (Fig. 4.).   

 

 
Fig. 3.  A PCG beat including two heart sounds, S1 and S2, generated by 
dynamical model. 

 

 

 
Fig. 4.  Comparison between (a) synthetic PCG with additive white 
Gaussian noise, and (b) real PCG from a healthy person. 
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V. CONCLUSION AND FUTURE WORKS 

In this paper a new dynamical model for 

phonocardiogram has been introduced which is capable of 

synthesizing PCG signals with realistic morphologies. 

Model parameters may be chosen to generate various valid 

morphologies for synthesized heart sound waveforms. 

Sampling frequency and beat-to-beat intervals can also be 

chosen. 

Having access to a realistic PCG provides a benchmark 

for testing numerous biomedical signal processing 

techniques.  

A number of applications are perceivable for the model,    

1) By fitting the model to the morphology of 

various normal PCGs, and extracting their model 

parameters, a database of realistic PCGs could be 

created. 

2) The synthetic PCG could be used to evaluate the 

effectiveness of different techniques for 

denoising, heart sounds segmentation and 

compression.  

3) Model-based PCG processing framework can be 

introduced in a similar way to ECG model-based 

processing framework (e.g. [10], [11], [12], 

[13]).  

4) By finding a pattern or relation among model 

parameters of a normal heart sound, abnormal 

morphologies could be detected. 

It is hoped that this model will be of interest for testing 

biomedical signal processing algorithms applied to PCG 

signals with different sampling frequencies and noise levels. 
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