
  

  

Abstract— The large number of false positives that result 
when automatic algorithms are considered for segmenting 
small multiple sclerosis lesions in magnetic resonance imaging 
hampers the posterior evaluation of lesion load. To address this 
problem we propose a fuzzy system which can improve the 
differentiation between true and false positive detections in 
proton density- and T2-weighted images. On the basis of an 
earlier work, which was focused on the detection of 
hyperintense regions in MR brain images, the system here 
presented introduces fuzzy restrictions derived from the 
regional analysis of the main features in such regions. Results 
show a reduction to a 3.6% in the number of false detections 
while preserving most of the true detections obtained using 
previous algorithm. 

I. INTRODUCTION 
HE presence of multiple sclerosis (MS) lesions can be 
visualized in brain magnetic resonance (MR) images by 

alterations in the gray-level intensity of the regions wherein 
this pathology is present. Nevertheless a direct 
correspondence between the alterations of gray level and the 
presence of pathology can not be established, because there 
are other areas in the images that also show hyper or 
hypointensity in relation to its local surrounding, what 
suppose a trouble for designing automatic detection and 
segmentation algorithms. 

Although different weighted images can be used for 
visualizing MS lesions, dual acquisition of proton density 
(PD-) and T2-weighted images are the most commonly used 
for evaluating its lesion volume [1].  

The detection of regions corresponding to MS lesions in 
MR images is an arduous and complex task. This is due to 
detection of lesions involves the analysis of several images 
with different anatomical features, and presents a high 
dependence of the contrast-to-noise ratio in the images. 
Moreover, MS lesions are inherently fuzzy with an 
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uncertainty component in their boundary definition [2].  
Although some authors, [3]-[7], have developed 

algorithms for detecting MS lesions, the obtaining of full 
automatic solutions free of false positives is a difficult task. 
Most false positives are related to the presence of small 
regions in the images and the difficulty in its differentiation 
from small MS lesions. To overcome this problem, these 
algorithms require the elimination of false detections 
manually or the prior exclusion of regions whose size is 
below a preset minimum.  

The presence of noise, inhomogeneities, and other 
characteristic factors of MR images, make difficult for an 
automatic MS detection algorithm get rid of false positives 
and recognize lesions following the expert way of work. An 
added difficulty factor that has to be taken into consideration 
for avoiding false positives in the case of small lesions is the 
large proportion of border pixels with respect to pixels 
within the lesion. 

The algorithm here presented introduces different 
strategies to filter out false detections, and is focused on the 
differentiation between small MS lesions and false 
detections obtained using our previous fuzzy detection 
approach [8]. With this aim the algorithm will be fed on 
location, size, and other regional characteristics of the 
detections that were not considered at previous work. The 
rest of the paper is structured as follows: Section II includes 
a short description of the previously developed algorithm 
[8], which is used as starting point to this work. The 
proposed strategies considered for reducing false detections 
are introduced at section III. Finally, at section IV, we 
present some results and the conclusions of the proposed 
work. 

II. INITIAL DETECTION OF SMALL MS LESIONS 
In a previous work, [8], we presented a fuzzy-based 

algorithm to detect small hyperintense regions in PD- and 
T2-weighted MR images addressed to the detection of MS 
lesions. We considered eight PD- and eight T2-weighted 
brain axial images acquired in a 1.5T Magnetom Vision MR 
System (Siemens, Erlangen, Germany) using a dual turbo 
spin-echo sequence (TR/TE/NEX/Matrix/FOV/Thickness: 
3000ms/12-80ms/1/256x256/250mm/3mm). These images 
corresponded to slices associated with four representative 
brain locations showing different levels of lesion load. 

Based on the protocol followed by the experts for 
detecting MS lesions in the considered images, small MS 
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lesions were defined as hyperintense regions located in the 
encephalic parenchyma, with a minimum size of three 
pixels, and fully contained within a 5x5 raster window.  

The hyperintensity characterization and evaluation was 
carried out considering a 9x9 raster window centered on the 
pixels of the MS small lesions marked by neuroradiologists, 
and considering that: 1) The gray level of hyperintense 
pixels is high enough; 2) A pixel has hyperintense behavior 
if its gray-level is sufficiently distinguishable from the gray 
levels of two adjacent pixels for a sufficiently large number 
of main radii within the 9x9 window; and 3) A region can be 
associated with MS lesion if its pixels present hyperintense 
behavior at both PD- and T2-weighted images. 

Following previous considerations, the fuzzy sets that 
evaluate the hyperintensity of pixels at both weighted 
images, μH,P (P=PD, T2), were obtained aggregating the 
hyperintensity membership functions at the eight main radii, 

ir
Pμ (1≤i≤8, P=PD, T2), by means of Ordered Weighted 

Averaging (OWA) operators [9]. The selection of the 
weighting vectors was accomplished applying a Mamdani 
type Fuzzy Rule-Based System (MFRBS).  
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After implementing a MFRBS at which the more usual 
"logical and" operators were considered, Previous 
membership functions were aggregated for obtaining the 
hyperintensity membership function μH as follows. 
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Finally, the hyperintense regions associated with small 

MS lesions were obtained by applying a 0.5-cut to the 
hyperintense fuzzy set, and performing an 8-connectivity 
analysis of the detected pixels in each image.  

III. REDUCTION OF FALSE DETECTIONS 
With the aim of filtering out false detections obtained by 

previous algorithm, while preserving its sensitivity, we 
introduce location, size, and other regional characteristics of 
small lesions that were not considered for obtaining the 
membership function μH of (2). The design dataset here 
considered is the defined at the beginning of section II. 

A. Location restrictions 
Whilst the definition of small MS lesion given in previous 

section restricts its location to the encephalic parenchyma, at 
previous algorithm the whole intracranial region was 
considered. So, besides the encephalic parenchyma, 
cerebrospinal fluid regions (CSF), such as the ventricular 
region or the brain sulci were considered. Because of in PD-
weighted images some pixels belonging to thin regions or to 

areas within wider fluid regions may show hyperintensity, 
and so turn out into false positives, the first constraint was 
addressed to ruling out these pixels.  

The location restriction here considered is based on the 
use of the Confidence Fluid Regions (CFR) fuzzy set, μCFR, 
introduced in [10], which provides the degree to which a 
CSF pixel has low possibility of misclassification as MS 
lesion pixel. So we draw upon for removing this kind of 
false detections. Then, if ICFR is the binary image obtained 
applying a 0.55-cut to μCFR, and δC2(ICFR) is the image 
obtained applying to ICFR morphological dilation with a 2 
pixel radius circular structuring element (C2), we define the 
membership function: 
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Although φH will allow us to eliminate pixels located 

within or close to confidence fluid regions, it can also 
remove some true detections. With the aim of avoiding this 
drawback the hyperintensity values of true detection pixels 
are modified considering a dilation of image Iϕ, subject to 
image IH, and the element C2 (δ(Iϕ,,IH,C2)), where IH and Iϕ 
are the binary images obtained applying a 0.5-cut to μH and 
ϕH. So, once the location restriction is considered, the degree 
to which a pixel is hyperintense is given by:  
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B. Size restrictions 
With the aim of guarantee that the size of the detected 

hyperintense regions fit size characteristics of small MS 
lesions, it is necessary to take into account that the presence 
of noise and inhomogeneities may cut down the 
hyperintensity values of some pixels. This reduction will 
affect the actual size of the detected regions that will become 
false detections. 

To eliminate false detections due to the above problem we 
carry out a local neighborhood-based review process of 
those pixels pij such that ψ(pij)=α, and 0.1≤α≤0.5. To do it, 
for each α, if ψ(pij)>α and more than 2 pixels within its 8-
neighborhood of pij have hyperintensity degree greater than 
0.5 (n8(pij)>2), we assign pij the value vH(pij) given by 
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we obtained the improved hyperintensity membership 
function: 
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Then, to filter out regions that do not fit size restrictions 
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of small MS lesion we analyze the 8-connectivity and 
introduce the function sv8(pij) that equals zero if χH(pij)>0.5 
and the maximum of the horizontal or vertical distances 
between the locations of the pixels 8-connected with the pij is 
greater than 4; or χH(pij)>0.5 and pij belongs to a 8-
connected region with less than 3 pixels. Considering this 
function the degree to which a pixel is hyperintense is given 
by:  

 

.)(
0)()2/)(,3.0min()( 8

⎩
⎨
⎧ == otherwisep

psvifpp
ijH

ijijH
ijH χ

χϑ  (6) 

 

C. Restrictions based on gray level 
As previously said, small MS lesions are regions 

constituted by pixels showing hyperintensity in PD- and T2-
weighted images (IPD and IT2). So, the proposal here 
considered consists on evaluating the gray-level values 
inside and outside detected regions considering the product 
images )()()( 2Pr ijTijPDijod pIpIpI = .  

Hyperintense regions no adjacent to other hyperintense 
regions should show greater gray level inside than in its 
outer proximity. So, to distinguish among pixels within 
(I(Rk)) and outside (O(Rk)) detected regions Rk, we study the 
mean and standard deviation of pixels within the regions 
(m(Rk), σ(Rk)). Moreover, to locate the pixels in the outer 
proximity of detected regions, op(Rk), we analyze their 
external morphological gradients mg(op(Rk)). Then, if all 
pixels in op(Rk) show a gray level lower than m(Rk)-βσ(Rk), 
the region Rk will be considered as actually hyperintense. 

To implement previous restriction we introduce the 
boolean function glf(pij) that equals 0 if pij belongs to Rk and 
max(mg(op(Rk)))>m(Rk)-βσ(Rk), and equals 1 in other case. 
Considering this function the degree to which a pixel is 
hyperintense is given by: 
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D. Restrictions based on other regional features 
The last strategy for reducing false detections is based on 

the analysis of 22 regional features that are studied 
individually and by pairs in order to obtain the best 
combinations of features that allow reducing false positives 
but preserving the sensitivity.  

After selecting the features that graphically show a better 
discrimination between true and false detections, we applied 
the Nelder and Mead optimization algorithm [11] for getting 
the parameters, in function of individual or paired analysis, 
that offer the optimum trade-off between sensitivity and 
false positives. In order to refine the optimization we repeat 
the analysis by including and excluding features until getting 
a subset of features and parameters that show stability in the 
improvement of the trade-off value.  

Finally, the eight out of the twenty-two selected features 
were: Mean Hyperintensity membership degree of the pixels 
in the region (MζH); Ratio between Mean Hyperintensity 
Memberships in the outer ring and the interior region 
(RMζH); Mean Gray-Level of pixels inside (MGLP), and on 
the outer Ring (MGLPR) of a region in the product image; 
Ratio between the Mean Gray-Levels in the outer ring and 
the interior region in the Product image (RMGLP); Ratio of 
maxima Distances in x and y directions (RDxy), Filling 
Factor, (FF), or proportion of pixels in a region regarding 
the product of maximum distances in the x and y directions 
in the region; and Compactness Factor, (CF), or proportion 
between the number of pixels in a region and the maximum 
distance in the x and y directions in the region. 

Then, using these features and the parameters selected by 
the optimization algorithm we introduce some regional 
restrictions. To do it, if frf(pij) equals 1 if ζH(pij)>0.5 and pij 
satisfies at least one of the restrictions defined from the 
selected features and parameters, and equals 0 in other case, 
the final hyperintensity membership function is given by: 
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IV. RESULTS AND CONCLUSIONS  
The proposed algorithm was evaluated on 184 PD- and 

T2-weighted images, corresponding to four patients with 
clinically definite MS, in which lesions were delineated by a 
trained operator and validated by a neuroradiologist. For 
getting the binary images resulting from the previous 
filtering process, we a 0.5-cut to the images I’H(i,j)≡ηH(pij) 
for obtaining the images IDH containing the detections 
associated with the presence of hyperintensity. 

To carry out the performance analysis of previous 
detection algorithm and the filtering approach here presented 
we considered following parameters: True Positives, TP, or 
number of regions marked up as small lesions (sl) by the 
experts and detected by the algorithm; False Negatives, FN, 
or number of regions marked up as sl by the experts but 
undetected by the algorithm; and False Positives, FP, or 
number of regions detected as sl by the algorithm but 
unmarked up by the experts. 

Using previous parameters two regional quality indexes 
were considered: False Negatives; and Sensitivity in the 
detection of MS small lesions, defined as S=TP/(TP+FN). 

Before obtaining the results the values of the parameters α 
and β, considered for defining χH (in (5)) and ζH (in (7)) 
were obtained. The selection of α was based on the analysis 
of χH looking for a trade-off between true and false positives 
considering values of α within the interval [0.1, 0.5]. After 
this analysis the chosen value was α =0.3. 

For selecting the value of β we considered that a negative 
value of this parameter would be a consequence of the 
hypothesis that gray level values outside a region should be 
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lower than the mean value inside the region. So after 
analyzing the results obtained for the values of β within the 
interval [-1, 1.4], the optimum value was β=0.2.  

Regarding the parameter considered in section III.D, the 
Nelder and Mead algorithm allowed us to introduce the 
following restrictions: a) MζH<0.668; b) RMζH>0.359; c) 
MGLP>170.75; d) MGLPR>97,004; e) RMGLP>1.826(MζH-
0.314); f) RDxy<0.230; g) RDxy>3.078; h) FF<0.396; i) 
FC<0.582.  

Table I shows the mean values of S and FP obtained by 
the initial detection proposal (row two), and after 
introducing the filtering restrictions (row three). In the case 
of the initial detection algorithm, while the quality values 
obtained for the design data images were S=1.0 and 
FP=243.62, when this algorithm is applied to the test images 
(row two) it can be appreciated that sensitivity is almost the 
same and the number of false detections, although has 
reduced, remains too high. 

By comparing the above results with those obtained after 
introducing the filtering restrictions (row three of table I), it 
can be appreciated that the introduction of the restrictions 
allows reducing the number of false detections to a 3.6% of 
the initial value (column three). This reduction makes up the 
decrease in the sensitivity, which still remains high enough. 
These results are also shown in Fig. 1, in which magenta 
regions correspond to detected small MS lesions for initial 
proposal, (c), and after applying the proposed algorithm, (d). 

 

 
 
As conclusion, in this paper we have presented an 

algorithm that introduces different strategies to filter false 
detections in MR images addressed to the detection of small 
hyperintense regions associated with MS lesions. We have 
applied this approach to improve the results obtained in a 
previous fuzzy algorithm [8] for detecting small MS lesions. 

The proposed strategies have been focused on introducing 
regional restrictions, which the initial algorithm did not 
include, in order to obtain an optimized membership 
function. As results show, the new membership function 
allows reducing the number of false detections to acceptable 
levels, but maintaining high enough detection levels.  

The obtained results suggest that the proposed algorithm 
can be used to complement the existing small MS lesions 
detection algorithm, or as starting point in the design of a 
new automatic MS lesion segmentation algorithm.  
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(a) (b)

(c) (d)  
Fig. 1.  Example of detections obtained for the PD- and T2 -weighted 
images (a) and (b). Magenta regions in images (c) and (d) correspond 
to the detections obtained by the initial proposal and after applying 
the proposed algorithm to reduce false detections. 

TABLE I 
SUMMARY OF RESULTS FOR IMAGES IN THE  TEST SET 

Analysis S FP 
Initial Detection 0.995 174.21 
Improved algorithm 0.760 6.27 

S: Sensitivity; FP: False positives. 
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