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Abstract— The Late Gadolinium (LG) enhancement in Car-
diac Magnetic Resonance (CMR) imaging is used to increase
the intensity of scarred area in myocardium for thorough
examination. Automatic segmentation of scar is important
because scar size is largely responsible in changing the size,
shape and functioning of left ventricle and it is a preliminary
step required in exploring the information present in scar. We
have proposed a new technique to segment scar (infarct region)
from non-scarred myocardium using intensity-based texture
analysis. Our new technique uses dictionary-based texture
features and dc-values to segment scarred and non-scarred
myocardium using Maximum Likelihood Estimator (MLE)
based Bayes classification. Texture analysis aided with intensity
values gives better segmentation of scar from myocardium with
high sensitivity and specificity values in comparison to manual
segmentation by expert cardiologists.

I. INTRODUCTION

Non-invasive estimation of cardiac pathology is gaining
lot of importance lately. Post myocardial infarction, some
patients will have reduced left ventricular ejection fraction
(LVEF) as part of the myocardium will get scarred without
functioning properly. With the help of recognized risk mark-
ers (LVEF and scar size), these patients are differentiated into
patients with high and low risk of getting life threating ir-
regular heart rhythms (ventricular arrhythmia). Patients with
high risk of getting arrhythmia are inserted with Implantable
Cardioverter-Defibrillator (ICD). An ICD is a small device
that is placed in the patient’s chest cavity to give electrical
pulses or shocks to control ventricular arrhythmia condition.
Today, the decision on who is getting ICD implantation
is based mostly on LVEF. Hence, improved strategies are
required for the identification of patients who benefit most
from ICD beyond the recognized risk markers due to the
following concerns: a) The ICD implantation procedure is
expensive. b) Overall benefit of ICD implantation for the
patients with low risk of arrhythmia is questionable. c) The
Patients inserted with ICD can not undergo Cardiac Magnetic
Resonance (CMR) imaging further.

Late Gadolinium (LG) enhanced CMR imaging is used
to find the extent of damage occurred to the myocardium
tissue post myocardial infarction. The use of contrast agents
in CMR imaging helps in increasing the intensity of scarred
tissue in myocardium for better examination. A study by Yan
et al., shows that scarred area contains useful information
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that assists in finding the patients with high and low risk of
arrhythmia [1]. There are manual and semi manual methods
to classify scarred area from myocardium [1]. Automatic
segmentation of scar tissue is important because scar size
is largely responsible in ventricular remodeling [2]. Lot of
attention is carried out for automatic segmentation of my-
ocardium from the CMR images. Some previous publications
have reported automatic segmentation of myocardium in late
enhancement magnetic resonance images [3] , [4]. However,
automatic segmentation of scar from the myocardium region
is yet to be fully explored. Some earlier work carried out
on segmenting scar from myocardium was reported in [4]
and [5]. Support vector machine was used to classify scar
(non-viable tissue) and myocardium (viable tissue) in de-
layed enhancement magnetic resonance images in [4]. In
[5], infarct region is detected in CMR images obtained by
Composite Strain Encoding (C-SENC) using a multi-stage
method. However, these methods might not be suitable for
differentiating high and low risk arrhythmia patients.

The main focus of this paper is to segment the scar tissue
from myocardium tissue. This paper is a preliminary step
in acquiring our ultimate task of distinguishing between
patients with high and low risk of getting arrhythmia. The
intensity level of scar is very high compared to myocardium
in LG enhanced CMR images. But general thresholding
schemes cannot be applied to CMR images as the intensity
level varies within a scar, from slice to slice and from
patient to patient. The results from our group’s previous
work [6] shows that there are textural differences between the
healthy myocardium and the scar tissues. We used dictionary
learning techniques and sparse representation to find textural
features of both the regions. From our experiments we found
that textural features alone are not enough to segment scar
from myocardium. Hence, along with textural features, the
intensity level of scar and myocardium is used as another
feature in segmenting scar from myocardium. The methods
and the material used in our work are described in the
following section.

II. MATERIAL AND METHODS

CMR images from a group of 22 patients with high risk
of arrhythmia and with implanted ICD were provided by the
Department of Cardiology in Stavanger University Hospital.
LG enhanced CMR images all of the 22 patients were
obtained from 1.5 Tesla MRI machine using same protocol.
These CMR images were stored according to the Digital
imaging and communications in medicine (DICOM) format
with 512× 512 pixel resolution. The myocardium and scar
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Fig. 1. Cropped short-axis CMR image showing manual segmentation of
myocardium and scar tissues. The yellow and blue dots in the image are
manually marked (by Cardiologist) coordinates to segment myocardium and
scar. The red and green contours generated by cubic spline interpolations
of the above coordinates show myocardium and scar tissues respectively.

tissue in all CMR images were segmented by an experienced
cardiologist as shown in Fig. 1.

In this work we are looking at the capability of dictionary-
based textural features combined with the dc-value of image
patches for segmenting the scar tissue. Because of the
obvious intensity differences in the healthy and scarred
myocardium tissues in the LG enhanced CMR images, dc-
value dc(i, j) has been used as one of the features in a
classifier. We define the feature dc(i, j) = mean(IN×N(i, j))
(where IN×N is the neighborhood around the pixel I(i, j)),
such that a new image Idc , with dc(i, j) as values at pixel
position (i, j) is made as a sliding window averaging over
the image. Dictionary learning and sparse representation
are used to obtain the two textural features for each pixel
in the image, one is correlated with textural features of
healthy myocardial region Rm(i, j) and the other one is
correlated with textural features of scarred region Rs(i, j).
The features are combined to form the feature vector x′ =
[Rs(i, j) Rm(i, j) dc(i, j)]. These feature vectors are used in
Maximum likelihood Estimator (MLE) based Bayes classifier
to obtain the segmentation of scar tissue from myocardium.
The dictionary-based textural features and Bayes classifier
are described in the following sections.

III. DICTIONARY-BASED TEXTURAL FEATURES

In this paper, Recursive Least Squares Dictionary Learning
Algorithm (RLS-DLA) presented in [7] is used for dic-
tionary learning and Frame Texture Classification Method
(FTCM) presented in [8] is used for sparse representation
and texture classification. Sparse representations and learned
dictionaries have been shown to work well for texture
classification by Skretting and Husøy in [8] and by Mairal
et al [9].

A dictionary D, is an ensemble of finite number of atoms
which can be used for signal representation. A linear combi-
nation of some of the atoms in the dictionary gives an exact
or approximate representation of the original signal. From the
original CMR image, a

√
N×
√

N image patch is reorganized
column wise into a column vector x of length N. We define
a finite number of dictionary atoms of length N arranged as

the columns in a matrix. The sparse representation x̃, or the
approximation of the signal and the representation error r
can be expressed as :

x̃ =
K

∑
k=1

w(k)d(k) = Dw, r = x− x̃ = x−Dw, (1)

where K is the size of dictionary and w is the sparse
coefficient vector. In a sparse representation only a small
number of the coefficients w(k) are allowed to be non-zero.
Finding the sparse coefficient vector can be formulated as:

w = argmin
w
‖w‖0 + γ‖x−Dw‖2

2 (2)

and is an NP-hard problem. This can be approximated by
greedy methods or by changing the l0 pseudo-norm by the
l1 norm. In this work, we used a greedy algorithm called
Order Recursive Matching Pursuit (ORMP) algorithm [10].

Dictionary learning is the task of learning or training a
dictionary on a available training set such that it adapts
well to represent that specific class of signals. In this work,
dictionaries were learned to represent scar and myocardium.
The RLS-DLA presented in [7] is an on-line dictionary
learning algorithm that updates the dictionary for every new
training vector. RLS-DLA was used to train the dictionaries
for myocardium and scar in our work. An interested reader
can refer [7] for further details on RLS-DLA.

Frame Texture Classification Method (FTCM) introduced
in [8] is observed closely as a supervised vector classifica-
tion method. In FTCM, texture in a small image patch is
modeled as sparse linear combination of dictionary atoms.
Refer [8] for further details. The texture classification algo-
rithm, FTCM used in our work proceeds as follows: Consider
the myocardium in a CMR image I, that contains two texture
classes: healthy and scarred myocardium. The training vector
yl for each pixel in the training image are made from that
specific pixel and its neighborhood N×N. In the training set,
each pixel is classified into a specified texture class. Then,
the dictionaries Ds and Dm are trained for the predefined
texture classes (scar and myocardium) using RLS-DLA.
Using the two trained dictionaries, each training vector yl
is then represented sparsely using ORMP vector selection
algorithm [10]. For training and test sets, the residual images
Rs and Rm which are of same size as the original image
are calculated for the two texture classes. For each pixel
in the myocardium of a training image, the residuals (or
representation errors) calculated for healthy myocardium and
scar dictionaries form the first two entries in the feature
vector for MLE based Bayes classifier. The two residuals
are calculated as:

Rs(i, j) = ‖yl−Dsws
l‖ and Rm(i, j) = ‖yl−Dmwm

l ‖, (3)

where ws
l andwm

l are sparse coefficient vectors.

IV. MAXIMUM LIKELIHOOD ESTIMATOR BASED
BAYES CLASSIFICATION

The Maximum Likelihood(ML) [11] technique is a popu-
lar method for parametric estimation of an unknown proba-
bility density function(PDF). The ML estimates of the mean
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mML and the covariance matrix SML of normally distributed
data X = {x1,x2, . . . ,xt , . . . ,xN} are given below:

mML =
1
N

N

∑
i=1

xt and SML =
1
N

N

∑
i=1

(xt −mML)(xt −mML)
T ,

(4)
where N is the number of training feature vectors. In this
work, labeled feature vectors were formed for the two classes
ωc, c = 1,2: healthy myocardium and scar. The training
feature vector used in our technique is framed as:

[
xt
]
=

 Rs(i, j)
Rm(i, j)
dc(i, j)

=

 ‖yl−Dsws
l‖

‖yl−Dmwm
l ‖

mean(IN×N(i, j))

 . (5)

The test feature vectors are collected from the test image set,
in the same way as training feature vectors. Before collecting
test feature vectors for final segmentation, the test residual
images are smoothed( using a a×a pixels separable Gaussian
low pass filter with variance σ2) because texture by definition
is not a pixel by pixel phenomena [8]. Smoothing reduces
overall segmentation error and improves the segmentation
within the texture regions at the cost of increased segmen-
tation error at the borders between various texture regions.
Before smoothing the test residual images, a nonlinearity
function can be applied on the residual images to improve
texture segmentation as seen in [8]. Nonlinearity function can
be either square root or inverse sine or logarithmic operation.

The training process involves calculating the ML estimates
to find class specific p(x|ωc), c = 1,2 and prior probabilities
P(ωc), c = 1,2. The Bayes decision theory is used to find
the posterior probabilities P(ωc|x) = p(x|ωc)∗P(ωc) for the
test feature vector. Bayes classifier assigns the test vector to
the class that has greater posterior probability.

V. EXPERIMENT AND RESULTS

We performed experiments to segment scar from my-
ocardium in CMR images using MLE based Bayes classifier
with dictionary-based texture features and dc-values. All our
experiments were carried out in MATLAB. CMR images
from a group of 22 patients implanted with ICD were divided
into training and testing groups with 15 and 7 patients
respectively. The number of image slices with visible scar
in each patient varies approximately from 5 to 12 depending
on the size of scar and heart. Only short-axis image slices
with visible scar were used in our experiments. The size
of the scar varies from one slice to the other. As shown in
Fig. 1 manual segmentation of myocardium and infarction
areas were used as classification labels in our experiments.
Preprocessing of any kind is not used on the images.

In all CMR Images, we take into account only my-
ocardium segmented by cardiologists. Two sets of training
vectors were generated from scar and healthy myocardium.
The neighborhood size 5× 5 was used to form training
vectors as explained in III. The same neighborhood size must
be used while training and finding residual images. Consider
the pixels on the border zones, their neighborhood extends
into other regions that are not under consideration. If we use

Fig. 2. Training vectors are generated from each pixel as long as that entire
neighborhood lies within one texture region. The neighborhood of pixels P1,
P2, P3 includes more than one texture, and the corresponding feature vectors
are excluded from the training set. P4 has the entire neighborhood within
one texture and hence the corresponding feature vector is included in that
texture’s training set.

training vectors from border regions, then the dictionaries
might learn the texture properties of other regions along
with the texture properties they are intended to learn. So,
the training vectors for the pixels whose neighborhood span
other regions were not considered in our experiments.This
is depicted in Fig. 2. After generating the training vectors
from both areas, the dictionaries were learned using RLS-
DLA as explained in [7]. The dictionary size of 25× 150
atoms was used in our experiments. Initial dictionaries were
formed by randomly selecting 150 vectors of length 25 from
the training sets.

After the training step, dictionaries were used on training
and test images to obtain residual images as described in
section III. Using 5× 5 neighborhood, dc image Idc were
obtained as explained in II. For each pixel in the myocardium
of training images, feature vectors were formed from residual
and DC images as explained in sections II and III. We scaled
the features to avoid dominance of one feature over the
other. Dictionary-based texture features are correlated and
hence they were jointly scaled to have zero mean and unit
variance. DC-values were scaled separately to have zero
mean and unit variance. The ML estimates of the labeled
feature vector set were determined according to 4. The test
feature vector set was calculated after including logarithmic
nonlinearity and smoothing (using low pass Gaussian filter
with σ = 5 and 9×9 window size) the test residual images.
The scaling coefficients from the training were stored to scale
the test vectors. The Bayes classifier assigns the test feature
vector to the class that gives maximum posterior probability
as discussed in previous section. Fig. 3 shows the results
of segmentation of the scar from the myocardium using
intensity-based texture analysis.

Sensitivity and specificity show the percent of correctly
segmented scar and healthy myocardium tissues by our
method in comparison to cardiologists segmentation. In
table I, results in first and second column are from Bayes
classifier with only dc-value and combination of dc-value
and texture features respectively. Table I clearly shows that
intensity-based texture analysis performs better and gives
overall average sensitivity of 82.32% and specificity of
89.05%. Table I shows that dc-value alone is not sufficient
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for better segmentation of scar.
For the test patients 2 and 3, our method works fairly

well as the scar intensity assists better in segmentation.
The performance of the method reduces in the test patients
6 and 7 as the intensity differentiation between scar and
myocardium is minimal in these patients. It is also reflected
in the first column of the table where only intensity value
is used as a feature vector. Texture analysis combined with
intensity values increases the sensitivity in patients 6 and 7.
The test patient 4 is an outlier (intensity values are out of the
typical range of other test patients) in our test set. Table I
shows that the outlier is handled effectively by our method.
Using automatic segmentation of myocardium instead of
manual segmentation may improve our results further. Our
results are comparable to the results reported (sensitivity of
81.34% and specificity of 92.28%) in [4]. We find it difficult
to compare our results with [5] as it uses different approach
for validation of results and CMR imaging technique.

Fig. 3. Results of segmentation of scar and healthy myocardium on CMR
images using intensity-based texture analysis. Column I: The cropped CMR
images containing left ventricle. II: The manually segmented myocardium
along with the segmentation results: blue - myocardium, cyan - scar,
yellow - other image parts). III: Sensitivity: Segmented scar (cyan) in
agreement with the manually segmented scar (blue). IV: Specificity: Healthy
myocardium(blue) segmented as scar (cyan).

VI. CONCLUSION AND FUTURE WORK
A. Conclusion

In this paper, a new technique has been proposed to
segment scar (infarct region) from healthy myocardium on
LG enhanced CMR images using texture analysis by incor-
porating the knowledge of intensity variations in scar and
healthy myocardium. In texture analysis, we have explored
the learned dictionaries capability of capturing differences
in the textures of scar and healthy myocardium. It is found
that dictionary learning is capable of finding the textural
differences even with a limited database of CMR images.
The segmentation of scar and healthy myocardium tissue by
intensity-based texture analysis is comparable to the manual
segmentation by experts with sensitivity of 82.32% and
specificity of 89.05%.

B. Future Work
We want to further explore our technique by using dis-

criminant dictionary learning presented in [9]. In addition we

TABLE I
COMPARISON OF SENSITIVITY AND SPECIFICITY ON THE GROUP OF 7

TEST PATIENTS USING DC-VALUE dc AND INTENSITY-BASED TEXTURE

ANALYSIS Rs , Rm , dc.

Sensitivity
Test
Patient dc Rs, Rm, dc

Patient 1 59,82 83,07
Patient 2 96,80 99,56
Patient 3 94,50 98,02
Patient 4 57,84 81,69
Patient 5 47,71 77,78
Patient 6 45,52 75,32
Patient 7 29,70 60,80
Average(SD) 61,70(25.1) 82,32(13.4)

Specificity
Test
Patient dc Rs, Rm, dc

Patient 1 99,62 98,65
Patient 2 86,22 67,12
Patient 3 93,53 88,04
Patient 4 97,48 94,60
Patient 5 95,45 89,34
Patient 6 98,25 94,49
Patient 7 95,86 91,08
Average(SD) 95,20(4,4) 89,05(10.3)

are further exploring if the intensity-based texture analysis
can be useful for separating high and low risk of arrhythmia
patients to implant ICD for high risk arrhythmia patients.
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