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Abstract—In this paper we report a method to automatically 

segment the internal part of globus pallidus (GPi) on the pre-

operative low-resolution magnetic resonance images (MRIs) of 

patients affected by Parkinson’s disease. Herein we used an 

ultra-high resolution human brain dataset as electronic atlas of 

reference on which we segmented the GPi. First, we registered 

the ultra-high resolution dataset on the low-resolution dataset 

using a landmarks-based rigid registration. Then an affine and 

a non-rigid surface-based registration guided by the structures 

that surround the target was applied in order to propagate the 

labels of the GPi on the low-resolution un-segmented dataset 

and to accurately outline the target. The mapping of the atlas 

on the low-resolution MRI provided a highly accurate 

anatomical detail that can be useful for localizing the target. 

I. INTRODUCTION 

ARKINSON’s disease (PD) is the second most common 

neurodegenerative disease and more than 4 million 

people worldwide are affected. The early symptoms and 

signs of PD, namely rest tremor, bradykinesia and rigidity, 

are related to the progressive loss of nigrostriatal 

dopaminergic neurons [1]. 

Deep brain stimulation (DBS) of the internal part of the 

globus pallidus (GPi) has shown to significantly improve the 

motor symptoms of advanced PD patients who are no longer 

responsive to drug therapy. A process that significantly helps 

the neurosurgical DBS procedure is the accurate 

identification of GPi using a pre-operative magnetic 

resonance (MR) dataset. Currently, this is done by direct 

visualization, which is intrinsically limited because of the 

poor contrast and resolution of routine clinical images [2]. 

The recent introduction of 7 T MRI into clinical research 

has offered the possibility of investigating many anatomical 

details not detectable using weaker field scanners [2]. The 

enhanced visualization of small brain structures like basal 

ganglia nuclei can be used to achieve greater precision to 
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guide DBS procedures to reach the desired targets. 

Due to the unavailability of these powerful MRI scanners in 

the clinical practice, we have developed a method for 

exploiting the detailed information deriving from an ultra-

high resolution human brain datasets in which the GPi is 

well defined. Herein we used this dataset as electronic atlas 

of reference on which the GPi was manually segmented. 

Subsequently, we used these data in an atlas-based 

segmentation procedure to outline the GPi on the pre-

operative low resolution images of patients affected by PD. 

The mapping of the atlas on the pre-operative low-resolution 

MRI will provide a highly accurate anatomical detail that 

can be useful for the targets localization. 

II. MATERIALS AND METHODS 

A. Experimental Protocol 

A brain hemisphere was selected for the construction of 

the ultra-high resolution MRI-based atlas. A T2* MRI was 

acquired as follows: 100 μm3 isotropic resolution, 

TR/TE/flip=40ms/20ms/20°, 1600×1100×896 matrix [3].  

The 1 mm3 resolution T1-weigthed MNI152 MRI 

provided by the Montreal Neurological Institute has been 

used as the low-resolution patient image to be segmented. 

This volume was spline-interpolated to create a high 

resolution volume with isotropic resolution of 100 μm3. 

B. Atlas-based Segmentation  

The goal of the atlas-based segmentation is to find the 

transformation that registers the ultra-high resolution atlas, 

in which structures of interest have been labeled, to a new 

MRI dataset of a subject, in which those structures cannot be 

easily recognized, in order to propagate the labels on that 

dataset and to segment it according to the resulting 

transformation. 

Since the volumes to be registered show significant 

differences (due to the different acquisition protocol, 

resolution, and informative content) the registration, in turn, 

need to be guided by a priori knowledge about the anatomy 

(i.e. by the segmentation) [4]. 

The global atlas-based segmentation procedure is 

composed by the following steps: 

i. a manual segmentation of the GPi and structures useful 

for the surface-based registration; 

ii. a preliminary landmark-based registration followed by 

a surface-based registration of the ultra-high resolution 

dataset (floating) on the MNI152 (reference); 
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Fig.1.  Atlas-based segmentation workflow. 
 

iii. the GPi label propagation. 

Fig. 1 shows the atlas-based segmentation workflow. 

C. Manual Segmentation  

The contours of the target nucleus (GPi) and the 

surrounding nuclei (caudate, putamen and the external part 

of the globus pallidus GPe) were manually outlined on the 

ultra-high resolution dataset (Fig. 2 left). The resulting 

output is a label mask, namely atlas. The atlas construction 

is performed only once and the same label mask can be used 

a number of times to segment new patients’ MRIs. 

The caudate (C) and the putamen (P) were manually 

segmented also on the patient dataset. Differently from ultra-

high resolution dataset, the globus pallidus (GP) was 

segmented as a unique structure on patient data without 

discerning between its internal and external parts (Fig. 2 

right).  

The caudate, the putamen and the entire GP were chosen 

to guide registration since they enclose the target of interest 

and then they can incorporate in the registration process very 

localized information on the neighbourhood relationships. 

Furthermore, their contours can be easily recognized on 

typical routine MR images and then they can also be 

outlined on the low-resolution images using semi-automatic 

or automatic segmentation strategies [4]. 

Fig. 2 shows the 3D model of the basal ganglia and the 

axial, the sagittal and coronal views of the segmented 

structures on both the datasets. 

D. Registration 

The registration of the atlas on the MNI152 was 

performed by a preliminary landmark-based registration 

followed by a surface-based registration. 

For the preliminary landmark-based affine registration a 

set of three non-collinear corresponding landmarks were 

manually identified in each volume: namely, the anterior 

commissure (AC), the posterior commissure (PC), and the 

superior point of the interhemispheric fissure. 

The algorithm for direct computation of the transformation 

is straightforward involving alignment of the centroids of the 

two sets of points followed by rotation and scaling of the 

image to be registered to minimize the sum of the squared 

displacements between floating and reference points. Once 

the coarsest differences between the two volumes, due to the 

different orientation and position, were corrected, the ultra-

high resolution atlas was further registered using a surface-

based registration procedure. 
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Fig.2.  3D model of the basal ganglia (top) and the axial (A), the sagittal 

(S), and coronal (C) views of the segmented structures (bottom) on the 

ultra-high resolution dataset (left) and on the MNI152 (right). 

 

For the affine registration, different registration strategies 

were employed: each segmented structure (the caudate 

nucleus (C), the putamen (P) and the entire globus pallidus 

(GP)) or a combination of them (C-P, C-GP, P-GP, C-P-GP) 

in the atlas was registered with the corresponding one in the 

patient dataset using an affine registration based on the 

iterative closest point (ICP) algorithm [5]. 

ICP starts with two corresponding meshes, that were 

generated by directly triangulating the homologous 

structures [6], and uses as initial estimation for their relative 

transform the transformation resulting from the preliminary 

landmark-based registration. Then, it iteratively refines the 

transform by repeatedly generating pairs of corresponding 

points on the meshes and minimizing the sum of squared 

distances (SSD) between the points. 

The algorithm stops when the difference between the SSD 

for successive iterations falls below 0.001 or a maximum 

number of 500 iterations is reached. 

Finally, a non-linear version of ICP algorithm based on 

the entire set of the segmented nuclei was applied.  

The non-linear registration was applied in a multi-resolution 

fashion by manipulating an underlying mesh of B-spline 

control points. The control points act as parameters of the 

free form deformations (FFDs) and the degree of 

deformation which can be modeled depends essentially on 

the resolution of the mesh of control points. 

The accuracy of the transformation was measured by the 

root mean square error (RMSE). 

E. GPi label propagation   

Atlas-based segmentation methods view the segmentation 

problem as a registration problem: once the different 

transformations were estimated, they were used to deform 

the label masks from the atlas onto the patient image. The 

manual labels of the GPe and GPi which were manually 

outlined on the ultra-high resolution dataset, are therefore 

propagated on the MNI152 dataset (label propagation). 

The lack of gold standards and the usual unavailability of 

a ground truth make the assessment of the label propagation 

accuracy difficult to solve. An estimate of the ground truth 

was obtained asking an anatomist to manually outline the 

GPi on the MNI152 on the basis of his anatomical 

knowledge. GPi is placed laterally with respect to the white 

matter of the internal capsule and medially to the external 
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Fig.3.  For each combination-based registration the distances between the 

centroids (Dc) of the algorithmically and the manually segmented structures 

(left) and the total Dc (right). 

part of the globus pallidus (GPe). GPi and GPe are 

separated by white matter fibers, namely the medial 

medullary lamina. 

Validation of GPi segmentation via label propagation was 

performed by evaluating several indices which compare the 

GPis semi-automatically identified by the registration 

procedures with that manually delineated by the anatomist. 
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Distance between centroids 

To benchmark the accuracy of the semi-automatic 

segmentation of GPi the distance between the centroids (Dc) 

of the semi-automatically and the manually outlined GPis 

was estimated. 

 

Volumetric Overlap 

Two different volumetric overlap metrics have been 

considered: 
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Where TP=true positives, i.e. pixels labeled as GPi in the 

GT and by the algorithm, FP=false positives, i.e. pixels 

labeled as GPi but not within GT, and FN=false negatives 

(FN), i.e. pixels falsely marked as background. 

PM (Percent Match) index shows the correspondence 

between GT and algorithm segmentation. An ideal PM value 

is 100%, that means that the algorithm localizes perfectly 

GPi pixels. Conversely, the P+ (Positive Prediction Value) 

index estimates the correspondence in size and location 

between the algorithm segmentation and GT. 

III. RESULTS 

Fig. 3 shows for each structure-based (C-based, P-based, and 

G-based registration respectively) and combination-based 

registration (C-P-based, C-GP-based, P-GP-based, and C-P-

GP-based registration) the distances between the centroids 

(Dc) of the algorithmically segmented and the manually 

segmented caudates (black bars), putamens (gray bars) and 

GPs (white bars) (left) and the total Dc that was calculated 

as the sum of the three distances (right). 

P-based, C-P-based and P-GP registration show low 

values of Dc and this enables us to infer that the putamen 

has a significant influence on the structures location 

estimation through the registration process. 

However, the better compromise was obtained when all 

three structures were used to guide the registration. We 

obtained for this last case a total Dc of 7.45 mm. 

Fig. 4 summarizes the results of the segmentation quality 

in terms of PM versus P+ (top) and Dc (bottom) for the 

different transformation models when all the three structures 

were used to guide the registration. For each transformation 

model we plot PM and P+ index in a single graph. The best 

values will be located next to the right angle, in which PM 

and P+ index reach the ideal value of 100% (Fig. 4). 

The results clearly show that affine registration (AFF) 

improves the quality of the segmentation as compared with 

rigid registration (RIG). However, both these transformation 

models perform significantly worse than the proposed non-

rigid transformation model (NR). The results also show that 
 

 

GPi
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Fig.5.  Deformation fields obtained using a 3 mm (top left), 1 mm (top 

right) and 500 μm (bottom left) control points resolution and the final 

segmentation of GPi (bottom right). 
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Fig.6.  3D reconstructed model of the algorithmically obtained GPi on the 

MNI152 (left) and its synchronous view with the ground truth (right) 
 

the non-rigid registration performs better as the resolution of 

the control point mesh of the spline-based FFD increases. 

While a control point spacing of 40 mm (NR40) yields 

already high quality compared to affine transformations, a 

control point spacing of 10 (NR10) or 5 mm (NR5) yields 

even better results. The main reason for this is the increased 

flexibility of the spline-based FFD to describe local 

deformations as the number of control points increases. For 

grid spacing lower than 5 mm, if we further increase the 

resolution of the mesh the PM slightly increases (from 54.85 

% to 57.01%) at the expense of P+ (from 65.68% to 

62.29%), so a better match with respect to the anatomist 

manual outline is accompanied by a slight increase of false 

positives. 

Regarding the accuracy of the transformation, we reach a 

RMSE of 492 μm, 450 μm and 432 μm for the 3 mm, 1 mm 

and 500 μm respectively. 

In Fig. 5 the results of the non-linear registration are 

presented. The resulting deformed grids and the deformation 

fields are shown at the highest resolution levels. On the 

bottom right the final segmentation of the GPi on the 

MNI152 is shown. 

Figure 6 shows the reconstructed 3D model of the GPi on 

the axial, the sagittal, and coronal views of the MNI152 

(left) and the synchronous view of the semi-automatically 

segmented volume GPiSEG and the GT volume (right). 

As it seen, the algorithm underestimates the real volume 

of the GPi. This result is confirmed by the PM index that 

reaches a maximum value of 58.24% for the 500 μm 

resolution grid. However, the distance Dc between the 

GPiSEG centroid (CGPI) and the GT centroid (CGT) results 

smaller (820 μm ) than the dimension of the voxel on the 

low-resolution routine images (Fig. 6 right). 

IV. CONCLUSIONS 

In this paper, we proposed an ultra-high resolution atlas-

based segmentation procedure to discriminate the GPi on the 

pre-operative low resolution images. 

Validation issues are crucial especially in DBS procedures 

where targets are small and their localization difficult. 

Accurate preoperative targeting can reduce the need for 

invasive exploration and decrease procedure-related 

complications. 

A study of surrounding visible easy-segmentable 

structures has revealed that the putamen is the nucleus that 

most influences the registration process. This is due to the 

strict topological relationship between putamen and GP that 

are nestled snugly together, giving the appearance of a lens 

shape with the convex surface oriented laterally. 

The use of affine registration based on the simultaneous 

use of multiple nuclei followed by a further non-rigid 

registration demonstrated an improvement of the quality of 

the GPi segmentation. The quality further improved as the 

resolution of the control points mesh of the spline-based 

FFD increases. However, results neatly show that no 

significant performance improvement is achieved beyond a 3 

mm grid resolution. 

The GPi volume obtained using a final resolution grid of 

500 μm results slightly underestimated compared with the 

manually outlined volume assumed as ground truth. 

However the estimate of its centroid, which is the most 

significant information for the planning of a trajectory in a 

targeted surgical procedure, is more accurate than the 

resolution commonly used for the routine MRI acquisitions. 

The proposed approach was evaluated only on the MNI152. 

Therefore this limited data do not enable a robust 

quantitative assessment of the accuracy of the method.  

However, this paper represents a first attempt to approach 

the problem and further investigations will be done. The 

method will be tested on a large number of cases in order to 

assess the generalizability of these findings to patients with 

different morphometry. Furthermore, in the absence of 

ground truth segmentation for clinical data, we adopted a 

golden standard generated by the anatomist using manual 

segmentation tools. It would be interesting to test the method 

using synthetic low resolution data for which a high-

resolution segmentation is known.  

Nevertheless our results on localizing the GPi were 

encouraging and we expect that the high resolution and the 

optimized contrast of the atlas may allow us to discriminate 

other DBS target structures such as the subthalamic nucleus 

(STN) in a way similar to the atlas-based segmentation 

procedure described for the GPi.  
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