
 

 

 

  

Abstract—In this work we propose to use an anisotropic 

diffusion process using robust statistics. We show that 

smoothing, while preserving edges, helps the 

segmentation of upper limb bones (shoulder) in MRI data 

bases. The anisotropic diffusion equation is mainly 

controlled using an automatic edge stopping function 

based on Tukey's biweight function, which depends on 

the values of gradients pixels. These values are divided 

into two classes: high gradients for pixels belonging to 

edges or noisy pixels, low ones otherwise. This process 

also depends on a threshold gradient parameter which 

splits both former classes. So a robust local estimation 

method is proposed to better eliminate the noise in the 

image while preserving edges. Firstly, the efficiency of the 

model in the noise reduction is quantified using an 

entropy criterion on synthetic data with different noise 

levels to evaluate the smoothing of the regions. Secondly, 

we use the Pratt’s Figure of Merit (FOM) method to 

evaluate edges preservation. Eventually, a qualitative 

edge evaluation is given on a MRI volume of the shoulder 

joint. 

I. INTRODUCTION 

Bone structures segmentation is considered as the important 

tasks for computer visualization and analysis in medical 

imaging. Particularly the shoulder joint is considered among 

the most complex because of its many arches of the mobility. 

For this case, it requires accurate segmentation to obtain a 

better understanding of its structure and its various 

movements. Although the reference modality to study bony 

structures are CT scans, we chose a MR images protocol to 

study the regions of the shoulder for two reasons. The first is 

related to the non invasive way of obtaining a data volume 

with high resolution without exposing the patient to high 

doses of X-rays. The second reason is due to the possibility 

of showing both soft tissues and bones of the human body. 

However, automatic segmentation of MRI images is difficult 

for several reasons including the noise which is due to the 

physical characteristics of acquisition, the intensity variation 

of pixels within the same tissue, the hypo signal appearance 

of bony structures, and the partial volume effects due to space 
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discretization. 

The manual segmentation is very time consuming, and often 

causes problems to accurately locate edges in the case of low 

contrast between two neighboring regions. Thus, an 

automatic segmentation of MRI data is a real challenge for 

researchers. The objective is to facilitate the task of the expert 

while having relevant results for better image interpretation. 

In this context, the anisotropic diffusion is considered among 

the most robust process that enables transformation from a 

noisy image to a smoothed one while preserving edges [1]. 

Many works focused on the anisotropic diffusion equation. 

Perona and Malik [2] were the first who studied its 

characteristics. Then, Catté [3] modified the process using 

pre-filtered data with the Gaussian kernel filter to regularize 

data and better calculate the gradient. Later Alvarez [4] 

introduced a mean curvature term to diffuse the gray level of 

the image in the direction orthogonal to the gradient. This 

process is based on a gray level pixels diffusion using an 

edge stopping function that operates with a threshold on the 

gradient values of the image. 

Several edge stopping functions were used in the literature in 

order to limit the diffusion across the edges. Thus, the 

estimation of the gradients corresponding to the edge pixels is 

needed. The robust estimators give a solution [5] and Black 

detailed the relationship between the anisotropic diffusion 

and the robust statistics in [6]. In this context, the edges can 

be seen as outliers for a robust estimator of the image 

gradients [7]. This idea is exploited in this paper 

reconsidering an anisotropic diffusion equation that we 

previously proposed in [8]. We study the local estimation of 

the threshold in the Tukey’s function in our anisotropic 

diffusion equation. The next section presents the diffusion 

model and the stopping function [9]. The third section 

explains the link between anisotropic diffusion and the robust 

statistics as well as the interest of this connection in our 

model. 

In the fourth section, we present results on both synthetic and 

real data. A quantitative evaluation method based on an 

entropy criterion validates the uniformity in each region and 

the FOM method [11] validates the edge preservation on 

synthetic data with different noise levels. A qualitative 

assessment of contours preservation is shown on a MRI 

volume of the shoulder joint using image gradients contours. 

II. ANISOTROPIC DIFFUSION PROCESS 

Anisotropic diffusion as defined by Perona and Malik is a 

filtering algorithm which removes noise while preserving the 

contrast at the edges by modifying the image using a partial 

differential equation. The basic anisotropic diffusion equation 

is written as follows:  

Robust local estimation in anisotropic diffusion process 
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where div is the divergence operator, ���� is the nabla operator 

and g is the stopping function that controls the diffusion 

process.  

Jerbi et al. [8] formulates this anisotropic diffusion equation 

(1) as a fronts propagation based on level sets. Diffusion is 

thus seen as an evolution of several surfaces of the same level 

under the influence of different propagation speeds. This 

connection between the front propagation and the anisotropic 

diffusion taking into account the improvements introduced by 

Catté and Alvarez, gave the basic diffusion equation: 
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(2) 

where t denotes the time scale parameter, H is the mean 

curvature of the image 
t

I  and ɶ
t

I  is the spatial smoothed data 

with a Gaussian kernel. 

The first term of equation (2) is the diffusion term that 

generates nonlinear front propagation and ensures edge 

preservation using the g function. A detailed analysis of this 

function will be explained later in the paper. 

The second term is useful for the edge contrast enhancement. 

The third term represents a data fidelity term that allows the 

control of the diffusion process from the already filtered data 

�� between �� � 	
 and	�, 	 being a time delay. This term 

was accurately studied in [8]. 

We note that α, β, and γ are the parameters corresponding to 

the three speed terms of the anisotropic diffusion equation 

and are manually fixed. The focus of this paper is therefore 

the first speed term which evaluates the influence of the edge 

stopping function on the diffusion. Thus β and γ were set to 0. 

In the literature, several stopping functions are chosen to 

satisfy the two following conditions:  

i) ( ), 0g x γ → : when the amplitude of x gradients is high, the 

diffusion is stopped at the edges, ii) ( ), 1g x γ →  : when the 

amplitude of x gradients is low, the diffusion reaches its 

maximum. These conditions provide both image smoothing 

and edge preservation. The scale γ  parameter represents the 

threshold at which the diffusion is stopped. A complete study 

of this parameter will be given below. 

Several studies have focused on the stopping function that 

characterizes the process of anisotropic diffusion. Perona and 

Malik [2] proposed two functions: “Leclerc” and “Lorentz”. 

Subsequently, Black [6] proposed to use the Tukey’s 

stopping function which enables to completely stop the 

diffusion process for pixels whose the gradient value exceeds 

the reject point γ , while for both other functions, the 

diffusion continues to smooth data. 

According [9], we are adopting the form of Tukey's biweight 

function in our model for the g function: 
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As explained above, this function depends on the parameter

γ that needs to be estimated. This parameter is used to ensure 

the success of the diffusion process reducing the noise as 

much as possible and preserving edges. In the next section, 

we explain the method based on robust statistics to determine 

this threshold. 

III. ROBUST ESTIMATION AND ANISOTROPIC DIFFUSION 

PROCESS 

In the literature, several techniques of robust statistics have 

been applied in the field of computer vision. These methods 

tend to modify a cost function in order to limit outliers’ 

influence. The main consequence is to limit the speed of 

convergence in the optimization algorithms. 

In this context Black [6] proposes to establish a link between 

robust statistics and anisotropic diffusion. Indeed, anisotropic 

diffusion can be seen as a problem of estimating a piecewise 

constant image from a noisy image. In this case the 

segmentation problem is defined as a minimization of a 

robust norm of the difference between a gray level image 

pixel and its neighbors. We note ( )ρ ⋅ the robust norm which 

is the cost function to minimize. This connection is given by

( ) ( ) ( ), . ' , ,g x x x xγ ρ γ ψ γ= = , where γ  denotes the 

threshold gradient and ψ the influence function, 

characterizing the effect of outliers i.e. in our case, the edge 

gradients of the image.  

This function reaches its maximum for a threshold γ and 

decreases after in order to reach its null value for another 

threshold 5eγ γ= . This link allows us to deduce robust 

methods for estimating the threshold parameter. For example, 

based on [5], the method of M-estimators using the MAD 

operator (Median Absolute Deviation) was used successfully 

in several applications [6, 8]. We choose ( )1.4826MADγ = i . 

This method gives very good results if the proportions of low 

and high gradient are homogenously distributed along the 

image. It means that there are as many region pixels as edge 

pixels but this is rarely the case. This led us to propose a local 

estimation method for calculating the MAD from a portion of 

the image and not from the entire image to respect the 

assumptions of the estimator. To apply this method in our 

iterative scheme, the threshold parameter γ  must be 

initialized by calculating it on the entire image. After each 

iteration i, γi is updated and estimated from the pixels selected 

by γi-1. This method minimizes the effect of the gradients 

majority in the images (high gradients or low gradients). 

This new local and robust method, estimating the threshold 

gradient associated with the edge stopping function based on 

Tukey's biweight allowed us to ameliorate results in 

comparison to the use of the global estimation [9]. A better 

5711



 

 

noise removal and edge preservation are obtained

the following section. 

IV. EVALUATION AND RESULTS 

To evaluate our result we propose to use sy

building from the manual segmentation of 

corresponding to the shoulder joint. We obtain 

172x255x146 voxels with a resolution of 0

composed of four homogeneous areas of a gray 

157, 176). Thus we have three regions and one 

we add a Gaussian kernel with different noise

σ=10, σ=20) as shown in Figure 1, middle colum

Figure 1 shows the results of the anisotropi

equation applied on synthetic data using both globa

estimation during 50 iterations. We note that the

regions become very homogeneous while

precisely the zone-edge. Also we show tha

estimation with the Tukey’s stopping function

column) not completely eliminates noise and t

between regions is altered. However using loc

with the same edge stopping function, the results

column) are significantly improved by eliminatin

noise while preserving edges. These anisotrop

results are performed using two different 

measures to validate the smoothed synthetic data
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 Fig 1: anisotropic diffusion results (in the middle in

the right smoothed results using Tukey’s functio

estimation, on the left smoothed results using Tukey’s

global estimation). 
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Fig 2: entropy curves of anisotropic diffus

data using local and global estimation. 

For each level noise, we note that the prop

the local estimation reaches lower entrop

model with the global estimation. 

B.  Evaluation of the edges segmentat

To quantify the result of anisotropic diff

location, we use the FOM (Pratt’s Figur

method is used in several works whi

detection process. It requires the edge

obtained by morphological operators 

data without noise. Then we use the fo

calculate the FOM: 
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scaling constant fixed to 1/9 as in Pratt’s

The FOM values must range between 0 

To correctly apply this evaluation method
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We note that using our proposed model (Tukey’s function 

with local estimation) FOM values are higher than using a 

model with global estimation for both noise levels (σ=5, 

σ=10). The local model better locates the edges.  

After the quantified validations of the method on synthetic 

data, we apply it on real MRI data of the shoulder. 

Figures 4 and 5 show the resulting volume processed by the 

robust anisotropic model using a local estimation (Fig. 5) 

compared to the previous model using a global estimation 

(Fig. 4). In Figure 5, the regions are more homogeneous than 

in Figure 4 and the edges are thinner and well located around 

the surfaces of the main bone structures. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we propose an anisotropic diffusion process 

using the Tukey’s edge stopping function based on a local 

robust estimation using a MAD operator. This proposed 

model enables us to better eliminate noise while preserving 

edges.  

To evaluate the model performance and to compare the 

results, we use both quantitative evaluation of regions 

(entropy) and edges (Pratt’s Figure of Merit) on synthetic 

data whose the ground truth is known. We also used a 

qualitative evaluation on MRI data.  

In further works, we will focus on the activation of the 

second term of the diffusion equation to show its influence on 

the improvement of the image contrast and the edges 

continuity. Thus, we should obtain an accurate segmentation 

helpful to better understand the shoulder’s structures and its 

various movements. We will apply our method to other 

imaging modalities such as CT images for quantifying the 

bone necrosis degree. 

 
 

Fig 4: Anisotropic diffusion process on MRI of the shoulder: 96th 

and 108th initial slice (left), diffused results using robust global 

estimation (middle), the corresponding edge pixels results (right). 
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Fig 5: Anisotropic diffusion process on MRI of the shoulder: 96th 

and 108th initial slice (left), diffused results using robust local 

estimation (middle), the corresponding edge pixels results (right). 
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