
  

  

Abstract—Magnetic Resonance Imaging (MRI) is an 
essential medical imaging tool limited by the data acquisition 
speed. Compressed Sensing is a newly proposed technique 
applied in MRI for fast imaging with the prior knowledge that 
the signals are sparse in a special mathematic basis (called the 
‘sparsity’ basis).  During the exploitation of the sparsity in MR 
images, there are two kinds of ‘sparsifying’ transforms: 
predefined transforms and data adaptive transforms. 
Conventionally, predefined transforms, such as the discrete 
cosine transform and discrete wavelet transform, have been 
adopted in compressed sensing MRI. Because of their 
independence from the object images, the conventional 
transforms can only provide ideal sparse representations for 
limited types of MR images. To overcome this limitation, this 
work proposed Singular Value Decomposition as a 
data-adaptive sparsity basis for compressed sensing MRI that 
can potentially sparsify a broader range of MRI images. The 
proposed method was evaluated by a comparison with other 
commonly used predefined sparsifying transformations. The 
comparison shows that the proposed method could give a 
sparser representation for a broader range of MR images and 
could improve the image quality, thus providing a simple and 
effective alternative solution for the application of compressed 
sensing in MRI. 

 

I. INTRODUCTION 
AGNETIC Resonance Imaging (MRI) [1], a 

non-invasive medical imaging technique, is excellent 
for imaging soft tissue. Conventionally, the full k-space is 
sampled and then an inverse Fourier transform is performed 
to reconstruct the image. However, because of the physical 
and physiological limitations, the acquisition of the full 
k-space data is time-consuming. A promising method to 
speed up the data acquisition is by reducing the total amount 
of k-space measurements using the parallel MRI (pMRI) 
technique. The pMRI technique includes the SiMultaneous 
Acquisition of Spatial Harmonics (SMASH)[2], the 
Sensitivity Encoding for fast MRI (SENSE)[3], or the 
GeneRalized Autocalibrating Partially-Parallel Acquisitions 
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(GRAPPA)[4]. However, due to the signal noise and the 
imperfect coil geometry, these techniques practically face a 
trade-off between image quality and speed. 

Alternatively, Compressed Sensing (CS)[5] is a recently 
proposed technique applied in MRI to reduce the k-space 
measurements through the exploitation of sparsity in the MR 
images, therefore the application of CS in MRI 
(CS-MRI)[6][7] can potentially speed up the overall data 
acquisition process. In CS-MRI, there are two fundamental 
conditions, (i) a special mathematic basis (usually called 
‘sparsity’ basis) is used for the sparse representation of the 
object image and, (ii) the sparsity basis should be incoherent 
with the sensing basis (the Fourier transform basis). With 
these two conditions, the object image can be accurately 
reconstructed with an appropriate nonlinear recovery 
algorithm. A pseudo-random variable density k-space 
under-sampling scheme is typically applied to ensure the 
incoherence between the sensing basis and the sparsity basis. 
To enforce the sparsity of the MR images, the conventional 
method is to project the images on to the predefined 
sparsifying transform bases, such as the discrete cosine 
transform basis[8] and the discrete wavelet transform 
basis[9]. These predefined bases can only provide an ideal 
sparse representation for limited types of object images. 

To overcome the limitation of the conventional sparsity 
bases, this work proposes a new method using Singular 
Value Decomposition (SVD)[10] as a data-adaptive 
sparsifying transformation for CS-MRI. The proposed 
method was evaluated with the brain image and an 
angiogram, which represent diverse image features.  

II. METHODOLOGY 

A. Compressed Sensing in MRI (CS-MRI) 
CS can be successfully applied to MRI based on the prior 

knowledge that the MR images can be sparsely represented 
in an appropriate basis (sparsity basis). Moreover, by 
applying the random under-sampling scheme in the k-space, 
the aliasing artifacts are incoherent in the sparsity basis. 
Therefore, the sparsity coefficients can be recovered by 
using an appropriate non-linear reconstruction algorithm, 
and as a consequence recovering the MR images. 
Mathematically, the CS-MRI framework can be formulated 
as the following constrained optimization problem:  

! 

Minimize : "(m) 1
s.t.#F(m) $ y 2

< %                         (1) 

Where m is an M!M MR image, ! denotes the 
sparsifying transformation, "F  denotes the partial Fourier 

Compressed Sensing MRI Using Singular Value Decomposition 
Based Sparsity Basis 

Yeyang Yu1, Mingjian Hong2, Feng Liu1, Hua Wang1, and Stuart Crozier1, Member, IEEE 

M 

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 5734

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



  

transform, y (y‹‹ M!M) are the measurements collected from 
the MRI scanner and  relates to the noise level of the 
measurements. The constrained convex optimization 
problem in equation (1) was solved as follows by 
considering its Lagrangian form described as: 

Minimize: 

! 

f (m) = "F(m) # y 2
#$ %(m) 1   (2) 

The non-linear conjugate gradient (NLCG) was applied to 
solve the unconstrained problem in the Lagrangian form, as 
described in equations (2). The algorithm was implemented 
in Matlab (Release 2010a). All simulations were performed 
on a MacBook Pro with a 2.4 GHz Intel Core 2 Duo 
processor and a 4 GB memory. 
             

B. MRI Object Images 
Fig. 1 shows a brain image and an angiogram that were used 
to test the reconstruction performance of the CS-MRI 
algorithms. Both images are fully sampled with a resolution 
of 512 by 512 pixels. The brain image was obtained in a 
Bruker 2T whole-body MRI system. The brain image is not 
naturally sparse in the pixel domain, so that it can be used to 
test the performance of the methods on general MRI images. 
The MRI angiogram was obtained in a Siemens 
MAGNETOM Avanto 1.5T system. The MRI angiogram 
can represent those special MR images already sparse in the 
pixel domain.  

 
Both images were evaluated from three aspects, (i) the peak 
SNR (PSNR) and the gray scale value of ||#F(m) - y||2 to test 
the quality of the image, (ii) the image reconstruction time to 
test the computing efficiency and, iii) the gray scale values 
of ||ψ (m)||1  for sparsity. The PSNR is calculated by:  

! 

PSNR =10log10
1

MSE
                      (3) 

Where the MSE is the mean squared error between the 
original and the reconstructed images. 

 

C. K-space sampling scheme 
In CS the k-space was under-sampled to reduce the 

measurements need, and as a result to shorten the scan time. 
In this work, the k-space was randomly under-sampled along 
the phase direction with a Gaussian density distribution. The 
central region of the k-space was fully sampled because it 
contains the major low frequency information. By adjusting 
the density function, 110 lines, 140 lines, 170 lines, 200 
lines, 230 lines, and 260 lines were randomly chosen from 
the full k-space data respectively. 

D. Using SVD to Construct The Data-adaptive 
Sparsifying Transform " 

1) Constructing the initial estimate of the sparsifying 
transformation " 

Based on the under-sampled k-space data, the image (Izf) 
was reconstructed by an inverse Fourier transform. Because 
the centre of the k-space was fully sampled, the dominant 
information of the desired image M was therefore kept, the 
image Izf should be a good initial estimate for M. 
 As it is shown in the top row of Fig. 2, for image Izf, its 
SVD can be expressed as 

Izf = U0!zfV0
*        (4) 

The initial estimate of the sparsifying transform can be 
written as follows.  

          !0(m) = U0
*mV0       (5) 

To test whether U0 and V0 are able to give a sparse 
representation for the desired image M, we projected M onto 
U0 and V0, and the result is shown in the bottom row of Fig. 
2.  

 
2) Updating the sparsifty basis " 
With the !0(m) from equation (5), we can use NLCG to 
solve the problem in equation (2) and obtain the first 
reconstrcted image M1. However, M1 is not the optimal 
estimate because the U0 and V0 in equation (5) are 
sub-optimal estimates of the sparsifying transform for the 
desired image M. To seek a better estimate, we update the 
matrices U and V iteratively by performing SVD on the 
reconstruction result of equation (2) M1 as a new prior image 
data, and repeat this until the image quality of the kth 

reconstructed image Mk get stable. According to our prior 
observation, Mk got stable after 2 or 3 times iteration. 

 
 

III. RESULTS 

A. The Brain Image 
The discrete wavelet transform (DWT) and the discrete 

cosine transform (DCT), as the conventionally used sparsity 
bases in the brain image case, were implemented to compare 
with the proposed method. Fig. 3 and TABLE I to IV show 
that the proposed method is faster in computation, achieves 
better image quality, and represents the image sparser. 
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1) Faster in computing time 

 
TABLE I shows that the SVD-based method outperformed 

the DWT and DCT-based method in computing time. 
Especially compared to the DWT-based method, the 
proposed was near twice faster. 
2) Better image quality 

Fig. 3 is the brain reconstruction result with 140 sampling 
lines of the k-space. Fig 3 shows that the three methods 
achieved very close image quality. TABLE II illustrates the 
comparison of the PSNR achieved by the SVD-, DWT-, and 
DCT-based methods. Higher PSNR value stands for better 
image quality. With different k-space lines sampled, the 
proposed method achieved the highest PSNR value among 

the others. Averagely, the SVD basis provided 0.57 (db) 
higher PSNR value than the DWT-based method, and 1.03 
(db) higher PSNR value than the DCT-based method. In 
TABLE III, the gray scale values of ||#F(m) - y||2 achieved by 
the three methods were compared. Smaller gray scale values 
of ||#F(m) - y||2 indicate better data fidelity. Table III shows 
that the proposed method provided the smallest l2 norm 
value at each k-space sampling rate. In average, the l2 norm 
value of ||#F(m) - y||2 achieved by the propose method was 
2.97 smaller than the DWT-based method, and 2.65 smaller 
than the DCT-based method. These demonstrate that the 
proposed method offered better image quality. 

 
TABLE II 

COMPARISON OF THE IMAGE QUALITY IN TERMS OF PSNR (db) 

NO. of 
k-space 
lines 
sampled 

110 140 170 200 230 260 

Brain       
SVD 25.82 27.73 29.60 31.49 32.94 35.12 
DWT 25.55 27.28 29.18 30.97 32.32 33.96 
DCT 25.02 27.10 28.90 30.45 31.67 33.35 
Angiogram       

SVD 37.90 41.47 44.88 48.38 50.37 51.96 
DWT 37.26 39.42 41.36 42.89 43.75 44.48 
IDT 35.49 35.93 36.21 36.34 36.38 36.41 

 
    

TABLE III 
COMPARISON OF THE DATA FIDELITY IN TERMS OF l2 

NORM ||!F(m) - y||2  
NO. of 
k-space 

lines 
sampled 

110 140 170 200 230 260 

Brain       

SVD 1.32 1.33 1.47 1.49 1.58 1.38 

DWT 4.22 4.25 4.30 4.38 4.59 4.70 

DCT 3.48 3.66 3.95 4.20 4.50 4.68 

Angiogram       

SVD 0.64 0.62 0.66 0.64 0.67 0.71 

DWT 2.28 2.25 2.35 2.40 2.42 2.47 

IDT 7.66 7.66 7.68 7.69 7.69 7.69 

 
3) Sparser representation 

The gray scale values of ||ψ (m)||1 achieved by the three 
methods were presented in TABLE IV. Smaller l1 norm value 
stands for sparser representation. With different lines of 
k-space sampled, the SVD-based method provided the 
smallest gray scale values of ||$(m)||1, and averagely it 
provided 8201.50 smaller gray scale values of ||$(m)||1 than 
the DWT-based method, and 7691.50 smaller than the 
DCT-based method. These illustrate that the SVD transform 
provided a sparser representation for the brain image, which 
represents the general MR images. 

 
TABLE IV 

COMPARISON OF THE SPARSITY IN TERMS OF l1 NORM ||"(m)||1 
NO. of 
k-space 

lines 
sampled 

110 140 170 200 230 260 

Brain       

SVD 793.76 832.74 868.82 894.79 914.46 929.10 

DWT 8107.05 8529.20 9029.12 9394.12 9592.65 9788.10 

DCT 7057.33 7831.90 8475.66 8985.24 9342.80 9689.67 

Angiogram       

SVD 323.47 336.09 330.30 334.42 356.14 350.10 

DWT 2507.36 2599.40 2627.37 2663.42 2682.91 2696.19 

TABLE I 
COMPARISON OF COMPUTING TIME (S) OF DIFFERENT SPARSIFYING 

BASES FOR DIFFERENT KINDS OF MRI IMAGES. 
NO. of 
k-space 

lines 
sampled 

110 140 170 200 230 260 

Brain       

SVD 161.5 158.8 171.7 167.5 172.9 156.9 

DWT 300.8 301.9 299.9 302.3 306.6 303.5 

DCT 216.4 217.2 216.9 220.8 225.7 221.4 

Angiogram       

SVD 152.4 159.4 164.9 156.1 154.4 192.7 

DWT 305.1 318.3 309.2 392.6 304.3 306.3 

IDT 52.2 59.0 56.4 51.7 57.5 53.6 
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IDT 14062.74 14061.69 14050.92 14048.13 14047.60 14048.69 

 

B.  The Angiogram 
The angiogram is naturally sparse in the image domain, so 
the identity transform (IDT) is used for these types of 
images for the sparsity basis. The IDT, DWT and SVD bases 
were applied in this case to compare the reconstruction 
performances. Fig. 4 and TABLE I to IVThe proposed 
method out-performed IDT and DWT on image quality and 
sparse representation. 
 
1) Medium computation speed 
In TABLE I, the SVD-based method was slower (roughly 
three times) in computation than the IDT-based method at 
each k-space sampling rate.  But it was still faster than the 
DWT-based method. And the computing time of the SVD 
method was averagely 50.52% of that of the DWT-based 
method. 
 
2) Better image quality 
Fig. 4 is the angiogram reconstruction result with 140 lines 
of the k-space sampled. In Fig. 4, the image qualities from 
the three methods were quite close to each other. In TABLE II 
the PSNR of the proposed method was slightly higher than 
the other methods at the six different sampling rates. In 
average, the SVD-based method provided 4.30 (db) higher 
PSNR value than the DWT-based method, and 9.70 (db) 
higher than the IDT-based method. In TABLE III, the data 
fidelity was compared and the proposed method achieved 
the best data fidelity. Averagely the gray scale values of 
||#F(m) - y||2 in the SVD-based method was 1.71 smaller 
than the DWT-based method, and was 7.02 smaller than the 
IDT-based method. The results showed in TABLE II and 
TABLE III demonstrate that the proposed method achieved 
better image quality. 

 
3) Sparser representation 
TABLE IV shows that at each k-space sampling rate, the gray 
scale values of ||$(m)||1 in SVD basis were smaller than 
those in the DWT or IDT bases. In average, the gray scale 
values of ||$(m)||1 in SVD basis was 2290.81 smaller than 
that in DWT basis, and was 1371.43 smaller than that in IDT 
basis. TABLE IV demonstrates that the proposed method was 
able to provide a sparser representation than the DWT and 
IDT bases. 

IV. CONCLUSION 
In this work, we developed and tested a Single Value 

Decomposition based data-adaptive sparsity basis for 
CS-MRI. From the case studies, it is found that compared 
with conventional bases, the proposed sparsity basis was 
able to provide a sparser representation for both types of MR 
images, recover image more accurately, thus improve the 
image quality in the CS-MRI applications. In the future 
work, this technique will be applied to dynamic MRI studies, 
where more prior image data is available for training 
data-adaptive sparsity basis. 
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