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Abstract—Movement-related field potentials can be 

extracted and processed in real-time with 

magnetoencephalography (MEG) and used for brain machine 

interfacing (BMI). However, due to its immense sensitivity to 

magnetic fields, MEG is prone to a low signal to noise ratio. It 

is therefore important to collect enough initial data to 

appropriately characterize motor-related activity and to ensure 

that decoders can be built to adequately translate brain activity 

into BMI-device commands. This is of particular importance 

for therapeutic BMI applications where less time spent 

collecting initial open-loop data means more time for 

performing neurofeedback training which could potentially 

promote cortical plasticity and rehabilitation. This study 

evaluated the amount of hand-grasp movement and rest data 

needed to characterize sensorimotor modulation depth and 

build classifier functions to decode brain states in real-time. It 

was determined that with only five minutes of initial open-loop 

MEG data, decoders can be built to classify brain activity as 

grasp or rest in real-time with an accuracy of 84±6%. 

I. INTRODUCTION 

AGNETOENCEPHALOGRAPHY(MEG) can be used to 

detect motor-related field potentials and provide real-

time feedback [1,2]. In addition to being non-invasive, 

MEG also has the added benefit of high temporal and 

relatively high spatial resolution. While MEG is not practical 

for a portable Brain Machine Interfacing (BMI) system, it 

has great potential for non-invasive brain-mapping and 

neurorehabilitation [3,4]. However, the small magnetic fields 

generated by neural activity and recorded with MEG can 

lead to a poor signal to noise ratio. To combat the poor 

signal to noise ratio, traditionally MEG studies average 

signals across many repetitions of open-loop recording, 
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where the subject has no feedback of their brain states. 

Despite the poor signal to noise ratio, MEG has recently 

been used to provide real-time (i.e. faster than 100 ms) 

neurofeedback to subjects [1,2].  

One valuable application of real-time MEG is to aid in 

upper-extremity rehabilitation. Current rehabilitation 

methods strive to improve hand and arm functionality using 

strategies that rely on residual motor function. However, 

when there is little or no residual movement (e.g. stroke and 

incomplete spinal cord injury) a therapy using motor control 

signals collected directly from the brain may be a better 

option. 

The attempted and imagined movements of body parts 

elicit stereotyped changes in cortical activity [5-8]. Some of 

these changes can be recorded and used to provide real-time 

feedback to individuals on their own brain states which 

could in turn promote neural plasticity and improve limb 

use. In particular, field potential changes in the mu (8-12 

Hz) and beta (18-28 Hz) frequencies are associated with 

movement and can be readily accessed with electrodes on 

the scalp, on the dura, or on the cortex surface. These 

sensorimotor rhythms (SMR) have been used to control 

assistive devices as part of various BMI systems [4,6,9-11]. 

Many BMI systems use mathematical decoders to 

translate the power spectrum of the field potentials into 

device commands. These decoders typically require some 

initial open-loop data that is representative of the movement-

related commands that will be used for the closed-loop 

control. To create appropriate decoders, sufficient amounts 

of open-loop data are needed. However, the more time spent 

collecting open-loop data the less time will be available for 

the closed-loop rehabilitation tasks. Therefore it is important 

to know how much open-loop data is needed for building 

appropriate decoders and also to provide a stable measure of 

brain activity to determine if any significant brain changes 

have occurred due to training. 

 

II. Methods 

A. Experimental design and setup 

Four right-handed, able-bodied individuals were evaluated 

in this study. All procedures were approved by the 

institutional review board at the University of Pittsburgh. 

MEG and forearm EMG were collected while subjects made 

cued overt right hand grasps or rested their hand. A black 

screen with a green cross was shown to direct a subject to 

begin a grasp. After 3 s the image changed to a blank screen 

indicating to the subject to relax their hand. Subjects were 

instructed to perform grasps solely with their hand, keeping 

their arm at rest. To minimize eye movements, subjects were 

also instructed to fixate their eyes in the center of the screen 

throughout each trial. A separate rest period was indicated 
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by a blank screen and lasted 2 s. 120 pairs of grasping and 

resting trials (i.e. blocks) were recorded for each subject. 

MEG was recorded with a 306-channel whole-head system 

(ElektaNeuromag®). This system has 102 sensor-triplets, 

each of which contains a magnetometer, a longitudinal 

gradiometer, and a latitudinal gradiometer. MEG and EMG 

signals were band-pass filtered between 0.1 Hz and 330 Hz 

and then sampled at 1000 Hz. For this study, the MEG and 

EMG data were resampled offline at 333.33 Hz. No 

preprocessing was required for noise removal. 

B. Calculating modulation depth 

Field potentials over the motor and sensory cortices 

decrease in power during movement relative to during rest 

[5]. Comparing the depth, or magnitude, of this power 

difference is a useful measure for determining the effect of a 

neurofeedback intervention [3, 12]. For the SMR, a more 

negative modulation depth indicates stronger modulation. To 

assess the sensorimotor related brain activity, only the 

channels over the contralateral motor area were used for 

calculating SMR modulation depth (figure 1 shows the 

channel locations). In addition, the magnetometers were not 

included in the analysis due to the poor signal to noise ratio 

[13]. The modulation depth was specifically defined as the 

percent change in power between 8 and 28 Hz over the 

contralateral sensorimotor area during grasp periods versus 

the power during rest periods. The modulation depth was 

calculated for each move and rest trial and averaged across 

multiple repetitions of each trial type. The power spectral 

density for each trial was calculated using a fast Fourier 

transform (128-point FFT) using the data between 500 ms 

and 1500 ms after cue onset to account for reaction time 

delays.  

To evaluate the amount of data needed for an appropriate 

calculation of modulation depth, the modulation depth was 

computed using different numbers of blocks (i.e. move/rest 

trial pairs). The particular blocks used were randomized to 

remove any effects of non-stationary in the MEG signals and 

for a more rigorous evaluation. For each number of blocks 

evaluated (1-120) the block order was randomized 60 times.  

C. Decoding in pseudo-real-time 

Classifiers were calculated that could translate multi-

channel brain recordings into a one dimensional command 

signal in real-time. To generate classifier functions that 

could be applied in real-time, the power spectrum was 

calculated every 48 ms for each channel in the contralateral 

sensorimotor area using a fast Fourier transform (128-point 

FFT) applied to a 382 ms sliding bin of data (2.6 Hz wide 

bands from 8 to 28 Hz). Linear discriminant analysis (LDA) 

was used to generate classifiers that distinguished the brain 

activity associated with hand grasp from hand rest. In a real-

time application, the predicted hand state (i.e. rest or grasp) 

at every evaluation point (i.e. every 48 ms) could be used to 

incrementally increase or decrease the aperture of a hand 

orthosis or a virtual hand. For this offline study, each 

evaluation time-point was assessed as being correctly 

classified as grasp or rest. A percent accuracy measurement 

was calculated as the total number of correct classifications 

over the number of total possible classifications where the 

EMG data was used to define data as move or rest. By 

definition, the level of chance was 50%. 

To evaluate the amount of data needed to build 

appropriate classifiers, a 10-fold cross-validation was 

performed. The cross-validation evaluation set aside a 

random 1/10th of the blocks (i.e. 12 move and rest trial pairs 

lasting 60 s total) for independent testing of the classifier 

functions. The various amounts of the remaining data were 

then used to build classifiers. For the training and testing 

sets, the number of rest and grasp data samples within each 

set were forced to be equal to prevent building biased 

classifiers or having biased testing. EMG data was used to 

calculate reaction in test data (see details below). However, 

because the target population will have limited muscle 

activity due to paralysis, using the EMG data to account for 

reaction time will not be possible. Therefore, in the training 

data, the first 500 ms after cue onset of each trial was 

removed to account for reaction time delays. This cross-

validation process was repeated for each 1/10th of the data 

being used for testing and then the block-order is re-

randomized 5 times, resulting in 50 accuracy measurements. 

In addition, different amounts of data (i.e. 10-108 blocks) 

were used to train the classifiers in order to assess the 

amount of data needed for appropriate decoding. 

If the task cues were used to judge the decoding 

performance during the grasp trials, there would be an unfair 

penalizing of the results during reaction time delays. Instead, 

EMG data was used to determine when the participant was 

actively grasping within the testing trials. The change in the 

EMG signal was rectified and low pass filtered to 5 Hz. 

Every time point where this processed EMG signal passed a 

given threshold was marked as muscle activity. Thresholds 

were chosen which resulted in the best relationship between 

the discrete, thresholded EMG signal and the task cue as 

defined by classification accuracy. With the optimal 

threshold values, an EMG classification accuracy of 90±5% 

(mean±s.d.) was found across subjects. Note that this 

method did not take into consideration any delays due to 

reaction time, therefore perfect accuracy was not possible. 

This simple classification process was used to estimate the 

time when the grasp had started in each grasp trial. Because 

brain activity precedes movement onset, the start of a grasp 

trial was defined as 100 ms before EMG onset in the testing 

data. No EMG information was used in training the 

decoders.  

III. RESULTS 

A. Modulation depth 

Figure 1 displays the SMR modulation depth on all 204 

gradiometers from all trials, averaged across all four 

subjects. A strong negative modulation, indicating a 

decrease in power during movement, was found on both 

gradiometer types in the expected hand area of the 

contralateral sensorimotor cortices. As expected, little or no 

modulation was observed in other cortical areas. 

The total modulation depth of the sensorimotor rhythms 

(8-28 Hz) was computed across the 36 contralateral 
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Figure 1: Modulation depth of the sensorimotor rhythms (8-28 Hz) from all 

trials averaged across all four subjects during right-handed grasping from 

the longitudinal and latitudinal gradiometers (left and right respectively). 
Modulation depth was calculated as the percent change in power during 

grasping relative to the power during hand rest. Shown in red are the 

channels over the contralateral sensorimotor area used in this study. 

sensorimotor sensors (locations indicated on figure 1). This 

modulation depth is shown in figure 2 when different 

amounts of data were used for the calculation. As expected, 

the more data used, the less the variability observed in the 

calculation of modulation depth. Table 1 shows the mean 

modulation depth for each subject across all 120 blocks.  

To determine how much data was needed for a stable and 

appropriate calculation of modulation depth, the data from 

each subject was assessed in the order it was collected. As 

more data was used to calculate the depth of modulation, the 

mean modulation depth approached the mean modulation 

depth found across all 120 blocks (as seen in figure 2a). The 

point at which the mean modulation depth was within 10 

percent of the mean across all 120 blocks of data was 

marked as the minimum amount of data needed to have a 

stable modulation depth calculation. The minimum numbers 

of blocks found this way are shown in table 1 which resulted 

in an 8±2% change in modulation depth from the „true‟ 

mean modulation depth calculated using all blocks across all 

subjects. In addition, using as little as 40 blocks results in a 

5±4% change from the „true‟ mean modulation depth across 

all subjects. 

B. Pseudo-real-time decoding accuracy 

The classification accuracies found from the 5x10-fold 

cross-validation are shown in figure 3 and table 1. The mean 

(±s.d.) of the accuracies found was 85±5% when using the 

maximum allowed data for training (i.e. 108 blocks), and 

still 81±6% when using only a quarter as much data for 

training (i.e. 27 blocks). As expected, the more data used for 

training, the better the decoding.  

The minimum amount of data needed for real-time 

decoding was determined by comparing the accuracies found 

using different amounts of training data during the 5x10-fold 

cross-validation with the accuracies found using the 

maximum allotted training data (i.e. 108 blocks). A paired t-

test was used to determine the minimum number of blocks 

that resulted in accuracies that were not significantly 

different from the accuracies using 108 blocks (p>0.01). 

Table 1 shows the minimum number of blocks calculated in 

this way for each subject. Using this minimum number of 

blocks for each subject, there was on average only a 2±1 

classification accuracy decrease compared to using all 108 

blocks. 

 
Figure 2: The stability of calculating SMR modulation depth over the 

contralateral sensorimotor cortex in four subjects using different amounts 

of data. A) Mean modulation depth found using a given number of blocks in 

the order they were origianally collected. B) The interquartile ranges of the 
modulation depth found using a given number of blocks when block order 

was randomized 60 times. The lines are in subject order from top to bottom: 

2 1 4 3. 

 
Figure 3: The stability of the pseudo-real-time decoding of grasp for four 

subjects using different amounts of training data. Different amounts of 

randomized MEG blocks were used to build decoders that classified the 
sensorimotor rhythms every 48 ms as a grasp or rest state. The interquartile 

range is shown for each subject where an accuracy of 50% is chance. The 

lines are in subject order from top to bottom: 4 3 1 2. 

A)

B)
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Table 1: Number of blocks needed for calculating sensorimotor modulation 
and for pseudo-real-time classification of grasp. Also shown are the 

modulation depth and decoding accuracy for each subject using all possible 

blocks.  

Subject 
Modulation 

Depth 

Decoding 

Accuracy 

Number of Blocks 

For Modulation For Decoding 

1 -13.89% 85±3% 64 63 

2 -11.25% 79±4% 37 60 

3 -16.43% 86±3% 33 57 

4 -16.21% 91±2% 13 55 

IV. DISCUSSION 

This study demonstrated that hand-related SMRs can be 

successfully decoded from MEG for real-time 

neurofeedback and the amount of initial data needed for 

decoder training and to assess changes in modulation after 

an intervention is practical. Unlike other BMI studies that 

use multiple sessions of subject training or extensive open-

loop data collection [1,4,6,9] prior to close-loop device 

control, this study demonstrated that less than five minutes  

of open-loop data is needed to achieve one-dimensional 

device control from naïve subjects. Furthermore, it is 

predicted that for these four subjects, an 84±6% real-time 

classification accuracy of grasp could be achieved with only 

5 minutes of open-loop data collection (i.e. 60 blocks). With 

this fast initial data collection, more time and effort can be 

placed on neurofeedback tasks to encourage rehabilitation.  

This study classified each time point during single grasps 

and during rest periods. Often other studies require subjects 

to perform repetitive hand activity instead of single 

movements because it can elicit stronger modulations. 

Stronger modulations may mean that less data is required to 

build an effective decoder. However, we have shown that 

using single cued movements, less than 5 minutes of data is 

needed to build a one degree-of-freedom decoder that can 

detect single movement-intents in real-time. Having 

individuals control a single movement of an orthosis or 

virtual hand using a single attempted movement could be 

particularly useful for encouraging plasticity and improving 

rehabilitation.  

The majority of BMI applications target individuals with 

motor impairments and it is possible that the amount of data 

required for estimating a stable depth of modulation and 

decoder would be different than observed in this study. 

However, BMI studies have demonstrated that though 

individuals with spinal cord injuries or strokes have less 

movement-related modulation than some able-bodied 

individuals, they are still capable of using their non-invasive 

field potentials to command simple devices [4,10,11]. 

One of the major factors influencing decoder performance 

is the number and independence of the features used in 

classification. Here, 9 frequency bins on each of 36 sensor 

signals (at 18 locations with two gradiometer types) were 

used; a total of 324 features. Commonly BMI studies use 

only a few hand-selected features and channels to decrease 

the amount of needed training data [1,6,9]. For this study, 

choosing more specific frequency bins, choosing less 

channel locations, or simply choosing a single type of 

gradiometer could decrease the amount of training data 

needed. However, this feature reduction could possibly 

decrease the decoder performance and would require 

additional experimenter involvement. 

One of the major advantages of MEG over other field 

potential measurement techniques is the high spatial 

resolution over the whole head which can be used to perform 

source imaging techniques. Source localization and spatial 

filtering methods can be applied in real-time to further 

improve decoding of movement information. However, most 

complex source imaging methods require substantial 

amounts of data for adequate modeling of the sources. The 

tradeoff between collecting open-loop data to improve 

decoding performance and performing close-loop trials for 

neurofeedback will always need to be considered. 
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