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Abstract— In the presented work, standard and high-density
electrocorticographic (ECoG) electrodes were used to record
cortical field potentials in three human subjects during a hand
posture task requiring the application of specific levels of force
during grasping. We show two-class classification accuracies of
up to 80% are obtained when classifying between two-finger
pinch and whole-hand grasp hand postures despite differences
in applied force levels across trials. Furthermore, we show that
a four-class classification accuracy of 50% is achieved when
predicting both hand posture and force level during a two-
force, two-hand-posture grasping task, with hand posture most
reliably predicted during high-force trials. These results suggest
that the application of force plays a significant role in ECoG
signal modulation observed during motor tasks, emphasizing
the potential for electrocorticography to serve as a source of
control signals for dexterous neuroprosthetic devices.

I. INTRODUCTION

Restoration of functional hand grasp is frequently listed as
providing the greatest potential quality-of-life improvement
for individuals with tetraplegia [1]. Though functional elec-
trical stimulation (FES) based systems have been found to be
successful in providing the restoration of hand function [2],
control strategies for such devices are often limited to sim-
ple switches or electromyographic control. Anthropometric
prostheses [3] [4] have the capability to produce dexterous
movements but require more sophisticated control signals
and strategies. Brain-machine interface (BMI) technology,
which aims to establish a direct link between the brain and
external devices, is of particular interest here, as it may
enable faster and more intuitive control of prosthetic devices
for individuals with severe motor impairments.

Though neural recording modalities including
single/multi-unit activity (SU/MUA) and electroen-
cephalography (EEG) have been investigated within a BMI
context, electrocorticography (ECoG) has gained particular
prominence as of late owing in part to its high signal-to-
noise ratio and high spatial and temporal resolution. ECoG
activity has been been found to provide information about
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individual finger movements [5] [6] as well as whole-hand
grasp [7] [8]. Though these studies have established the
feasibility of the extraction of hand movement information
from ECoG recordings, clinically-viable BMI prosthetic
devices ultimately must be robust to forceful interactions
of the prosthetic device with the external world, namely
the influence of applied force on the ability to decode
movement intention. While the effect of applied force on
SU/MUA recordings has previously been investigated [9], to
date little work has investigated the effect of the application
of force on the modulation of ECoG signals.

In the presented work, three individuals with ECoG grids
implanted subdurally for intractable epilepsy monitoring
performed a task that required them to either pinch or whole-
hand grasp a custom-made squeeze bulb with a specific
amount of force. We show that hand posture can reliably
be predicted from ECoG recordings across varying force
conditions, with hand posture most easily predicted for high-
force trials.

II. METHODS

A. Human Subjects and Behavioral Paradigm

Electrocorticographic signals were recorded from 3 sub-
jects (2 female and 1 male, ages 12, 45, and 9) undergoing
invasive monitoring for intractable epilepsy, with seizure foci
and electrode placement varying across subjects. Informed
consent was obtained from each subject prior to testing,
with all experimental procedures approved by the University
of Pittsburgh Institutional Review Board and following all
guidelines for human subject research.

The experimental paradigm used for all experimental ses-
sions is shown in Figure 1. Subjects were instructed to either
pinch or grasp a rubber squeeze bulb with a specific amount
of force. Subjects were instructed to perform a two-finger
pinch in order to ensure that equivalent force conditions
were capable of being applied in both hand postures. Visual
feedback was provided in the form of a vertical bar on a
computer screen displaying the current level of force being
exerted on the squeeze bulb, the target force level, and
the desired hand posture. Subjects were then required to
apply the correct amount of force such that the feedback
bar remained within a small window surrounding the target
force level for a short amount of time (∼100 ms). Target
hand postures were randomized across trials, and target
force levels were either randomized over a continuous force
scale (random-force task) or between a low and high force
condition (two-force task). Subjects A and B completed the
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random-force task, while Subject C performed the two-force
task. Between 86 and 106 trials of hand movement data were
collected per subject across multiple experimental sessions.

A

B C
Fig. 1. Force task paradigm. A. Example of a two-finger pinch hand
posture. B. Example of a whole-hand grasp hand posture. C. Visual stimulus.
Desired hand postures were displayed to subjects on a computer screen
in text format, while real-time force feedback was displayed as a vertical
orange bar. Target force levels were displayed as a series of vertical white
bars; subjects were then required to either pinch or whole-hand grasp a
squeeze bulb with the desired level of force.

B. ECoG Recording and Preprocessing

Standard clinical ECoG grids (Ad-Tech Corp., 3mm di-
ameter contact area, 10mm center-to-center distance) were
implanted subdurally in all subjects for purposes of epilepsy
monitoring. In addition, Subject B was implanted with a
high-density ECoG grid (Ad-Tech Corp.) consisting of 16
disc electrodes (1.5mm diameter contact area, 4mm center-
to-center distance) implanted for research purposes. ECoG
signals were band-pass filtered between 0.1 and 200 Hz
and sampled at 1200 Hz using the g.USBamp amplification
system in conjunction with the BCI2000 software package
[10]. Signals were segmented by desired hand posture and
aligned to force onset prior to analysis. For each subject,
a subset of 14 or 15 electrodes located over cortical ar-
eas responding to hand movement were chosen for further
processing (Figure 2). Time-frequency distributions for se-
lected electrodes were calculated using the maximum entropy
method (1 Hz frequency bins, window and step sizes of 200
and 20 ms, respectively) [11], log-transformed, converted
to pseudo Z-scores using baseline data collected during the
same experimental session [12], and then averaged across the
8-12 Hz, 18-24 Hz, 75-115 Hz, 125-159 Hz, and 159-175
Hz frequency bands [5]. Data from multiple sessions were
combined into a single data set for further analysis.

C. Dimensionality Reduction and Classification

Time-varying band power for each trial was further aver-
aged over the [-1s 1s] time interval relative to force onset to
account for variability in the temporal profiles of both hand
posture and force data. The resultant feature sets consisted
of time-averaged band power in 5 frequency bands for
each electrode, resulting in an N × D matrix of trials (N )
by features (D). Standard Principal Components Analysis
(PCA) was then performed on this matrix to yield a set of

D principal components (PCs) ranked by their contribution
to the total variance of the data; feature reduction was per-
formed by choosing the top M PCs for use in classification.

Gaussian Naı̈ve Bayes (GNB) classification was used
to predict either hand posture (2 classes, all subjects) or
hand posture and force level (4 classes, Subject C only)
using leave-one-out cross validation. To study the effect of
dimensionality reduction on classification accuracy, both the
original time-averaged band power data (i. e., the “high-
dimensional” data) and the PCA representation of the time-
averaged band power (i. e., the “low-dimensional” data)
were used for classification. Classification was performed
for all values of M from 1 to D (the size of the high-
dimensional space, 70 for Subjects A and B and 75 for
Subject C). A permutation test was utilized to determine the
chance-level classification accuracy, where the class labels
for each dataset were randomly permuted and re-classified
1000 times. Chance levels were calculated as the mean ± one
standard deviation of the classification accuracies obtained
from the permutation test, while p-values were determined
by calculating the fraction of permuted classification results
exceeding the accuracies obtained for the non-permuted data.

III. RESULTS

Tables I and II show the results obtained for all subjects
during classification of hand posture from high and low-
dimensional data sets, respectively. Two-class classification
accuracies of 0.42, 0.60, and 0.65 were obtained for clas-
sification of hand posture from the high-dimensional data,
with the results obtained from Subjects B and C found to
be statistically significant (p < 0.05). When classifying low-
dimensional data, maximum accuracies of 0.71 (M = 11),
0.71 (M = 62), and 0.80 (M = 17) were found for Subjects
A, B, and C, respectively. In all cases, the lower-dimensional
representation of the data yielded statistically significant
classification accuracies. When data from the two-force
hand posture task performed by Subject C were examined,
clear patterns of modulation in time-varying spectral power
by applied force level were observed. Figure 3 shows the

TABLE I
TWO-CLASS HAND POSTURE CLASSIFICATION RESULTS FOR

HIGH-DIMENSIONAL DATA.

Subject Accuracy Chance Level p-Value
A 0.417 0.498± 0.062 0.906
B 0.604 0.499± 0.063 0.036
C 0.651 0.503± 0.071 0.010

TABLE II
TWO-CLASS HAND POSTURE CLASSIFICATION RESULTS FOR

LOW-DIMENSIONAL DATA.

Subject # PCs Accuracy Chance Level p-Value
A 11 0.705 0.501± 0.063 1e− 3
B 62 0.708 0.502± 0.060 < 1e− 3
C 17 0.802 0.501± 0.071 < 1e− 3
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A B C

Fig. 2. Electrode locations. X-ray images showing implanted ECoG electrode grids for subjects A (left), B (center), and C (right). Though large numbers
of electrodes were implanted in all subjects, analysis was restricted to 14 or 15-electrode subsets (defined by the red lines) found to be strongly modulated
by the hand posture task.

normalized time-frequency data from a representative elec-
trode averaged across trials during all four hand posture and
force level conditions. Here, increased modulation of spectral
power across the 60 - 140 Hz frequency band is observed for
the high-force pinch condition relative to other hand posture
and force level conditions.

When attempting to classify both hand posture and force
level from data obtained during the two-force hand posture
task, classification accuracies of 0.40 (p < 0.007, chance
level: 0.25 ± 0.057) and 0.50 (p < 1e − 3, chance level:
0.025 ± 0.057) were obtained using the high and low-
dimensional (M = 10) data sets. A confusion matrix
depicting these results is shown by Figure 4. It was found
that high-force conditions were most easily classified, with
the high-force grasp condition correctly predicted 70.8% of
the time.

To further assess the effect of applied force on the ability
to classify hand posture from ECoG signals, data obtained
during the two-force hand posture task was separated by
force condition and re-classified to predict hand posture.
Here, classification accuracies of 0.54 and 0.84 were found
when classifying hand posture from low and high force-level
trials, respectively, using the low-dimensional (M = 10)
representation of the data.

IV. DISCUSSION AND CONCLUSIONS

We have shown that hand posture information can be
predicted from ECoG data with greater-than-chance accuracy
across varying force conditions using PCA-based dimension-
ality reduction. Furthermore, we have also shown that force-
dependent modulation of ECoG spectral power is observed
during hand movement, and that higher classification accu-
racies are obtained when classifying ECoG data obtained
during high-force trials. These results are encouraging from
a BMI perspective, as they suggest that ECoG may serve as
a potential source of neural signals for dexterous prosthetic
devices such as the Modular Prosthetic Limb and DEKA
Arm [3] [4], and that these signals may be sufficiently
force-invariant to allow for prosthetic hand control across
a wide range of hand posture activities which may require
the application of different levels of force.

The increases in classification accuracy observed as a
result of PCA dimensionality reduction are not particularly

surprising, considering that Naı̈ve Bayes classification was
used to predict hand posture from the recorded data. Though
spectral data was averaged over larger frequency bands prior
to analysis, the substantial correlation observed across the 75-
115 Hz, 125-159 Hz, and 159-175 Hz frequency bands, char-
acteristic of broadband ECoG spectral modulation observed
in other studies [13], violates the independence (“Naı̈ve”)
assumption of the classifier used to predict hand posture.
By using PCA for dimensionality reduction, the lower-
dimensional state used for classification more appropriately
fits this independence assumption, resulting in an increase in
classification accuracy.

Though the hand posture classification accuracies pre-
sented here are comparable to those previously obtained
from ECoG signals (79.6% two-class and 68.3% three-class
classification accuracy) [14], in spite of the confounding
factor of applied force, it may be possible to increase
classification accuracy through improvements in task design.
Here, signals were averaged over large time windows prior
to classification to account for inter-trial differences in the
temporal profiles of hand posture and applied force. It is
possible that by enforcing greater consistency in hand posture
and applied force profiles, as well as including time-varying
features for classification rather than simply using time-
averaged features, our ability to predict hand posture may
be increased. However, it should be noted that these results
provide a framework to identify the existence of a neural
substrate encoding both hand posture and grasp force; our
ultimate goal is to develop a functional BMI device capable
of achieving continuous control over both hand posture and
grasp force.

Finally, the fact that classification accuracy is greatest
for high-force trials indicates that ECoG signals encoding
hand posture are more discriminative for high levels of
applied force than low force levels. This suggests a “gain
field”-like modulation of hand posture tuning by grasp force,
representing a nonlinear interaction between force and hand
posture. This type of gain field activity has been observed
previously for interactions between hand speed and direction
[15] and between hand translation and rotation [16] using
single-unit recordings. However, in order to fully assess the
relationship between hand posture and grasp force a more
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Fig. 3. Modulation of ECoG spectral power during a two-force hand posture task. Time-frequency plots of normalized spectral power averaged across
between 20 and 24 repetitions per hand posture/force condition are shown for Subject C. Force onset is indicated by the dashed black line at t = 0, while
the 60 - 140 Hz frequency band exhibiting task-related modulation is framed by the horizontal black lines at 60 Hz and 140 Hz. Qualitatively similar results
were observed across multiple electrodes, with high-force conditions eliciting stronger high-frequency modulation for a particular hand posture relative to
other conditions.

sophisticated paradigm utilizing the isometric application
of force would likely be required to fully disassociate the
effects of hand posture and applied force on ECoG signal
modulation.
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Fig. 4. Classification of hand posture and force level during a two-force
hand posture task. A confusion matrix representing fractional counts of the
actual (y-axis) versus predicted (x-axis) hand posture and force level during
the two-force hand posture task is shown for data collected from Subject
C.

In summary, the work presented here provides preliminary
evidence of the effect of force and hand posture interactions
on ECoG signal modulation. We have shown the ability
to predict hand posture information from ECoG signals
across varying levels of applied force, as well as the benefit
of dimensionality reduction in the classification of highly-
dimensional data sets. Finally, we have presented evidence
of “gain field”-like interactions between hand posture and
grasp force. These results represent an initial attempt at
characterizing the effect of hand posture and grasp force
on ECoG signal modulation, providing a basis for a more
thorough investigation of this important relationship.
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