
  

  

Abstract—Although most brain–machine interface (BMI) 

studies have focused on decoding kinematic parameters of 

motion, it is known that motor cortical activity also correlates 

with kinetic signals, including hand force and joint torque. In 

this experiment, a monkey used a cortically-controlled BMI to 

move a visual cursor and hit a sequence of randomly placed 

targets. By varying the contributions of separate kinetic and 

kinematic decoders to the movement of a virtual arm, we 

evaluated the hypothesis that a BMI incorporating both signals 

(Hybrid BMI) would outperform a BMI decoding kinematic 

information alone (Position BMI). We show that the trajectories 

generated by the Hybrid BMI during real-time decoding were 

straighter and smoother than those of the Position BMI. These 

results may have important implications for BMI applications 

that require controlling devices with inherent, physical 

dynamics or applying forces to the environment. 

I. INTRODUCTION 

OST brain-machine interfaces (BMI) to date have 

focused solely on decoding kinematic variables, such 

as hand position or velocity, in order to infer the intended 

movement trajectory of the user (e.g. [1]-[3]). However, a 

number of studies have provided evidence that the primary 

motor cortex (MI) encodes kinetic signals as well, including 

hand force and joint torque [4]-[6]. Use of these kinetic 

signals could improve upon the performance of kinematic 

decoders and may be necessary to extend the applicability of 

these BMIs to more complex tasks, such as picking up 

objects of varying mass. A recent study confirmed the 

possibility of decoding a kinetic signal, showing that elbow 

and shoulder joint torques can be reconstructed with 

accuracy nearly equivalent to that of a hand position signal 

[7].  

Here, we sought to improve BMI performance by 
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simultaneously decoding intended joint torques and hand 

position from a monkey’s neural signals in MI. These two 

signals were used to drive a simulated two-link arm, whose 

position was communicated visually to the monkey as the 

position of a cursor on a screen. In all the configurations we 

tested, the combination of kinetic and kinematic decoders 

during real-time BMI control resulted in movements that 

were straighter and smoother than those of a kinematic 

decoder. 

II. METHODS 

A. Behavioral Task 

One adult male rhesus macaque (Macaca mulatta) was 

trained to control a cursor in a two–dimensional workspace 

using the KINARM, a two-link robotic exoskeleton (BKIN 

Technologies, Kingston, ON). The animal sat in a primate 

chair with his arm abducted 90 degrees and supported by the 

robot such that all movements were made within the 

horizontal plane. Direct vision of the arm was precluded by a 

horizontal projection screen. Visual feedback was available 

via a cursor projected onto the screen. The position of the 

cursor was controlled by one of two sources: either the 

position of the robot’s end effector (i.e. the monkey’s hand 

position) or the output of a BMI that decoded the position of 

the cursor based on neural activity in the recent past. 

The random target pursuit (RTP) task required the monkey 

to repetitively move a cursor (6 mm diameter) to a square 

target (2.25cm
2
). The target appeared at a random location 

within the workspace (12 cm by 12 cm), and each time the 

monkey hit it, a new target appeared immediately in a 

random location. This task was designed to generate 

complex movements that thoroughly sample the position and 

velocity space of the arm.  In order to complete a successful 

trial the monkey was required to sequentially acquire either 

three targets (BMI conditions) or seven targets (Active 

Movement). A trial was aborted if any movement between 

targets took longer than 2.5s. 

B. Real-Time Hybrid BMI 

Our Hybrid BMI (Figure 1) converts neural activity into 

elbow and shoulder joint torques in order to drive the 

movement of a two-link simulated arm. The hand position of 

the simulated arm (XC) is updated based on the current joint 

angles, velocities, and accelerations of the virtual arm and 

the joint torques generated by the BMI (τ). The torques, τ, 
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are a weighted combination of the torques generated by the 

individual components of the Hybrid BMI: 

vpt KvKpKt ττττ *** ++= , (1) 

where τt is the prediction of the monkey’s intended shoulder 

and elbow joint torques made by the torque decoder, τp is the 

torque generated by the position controller, τv is the torque 

generated by the velocity controller, and Kt, Kp, and Kv are 

gain coefficients to control the mixture of the component 

torques.  

 

 
 
Figure 1: The Hybrid BMI uses neural activity recorded from the primary 

motor cortex to generate a simulated hand position in Cartesian space 

which the monkey then uses to hit targets. XD and XC are two-element 

column vectors containing the X and Y components of a hand position in 

Cartesian space, ε is a two-element column vector containing the X and Y 

components of an error signal, τt, τp, τv and τ are two-element column 

vectors containing joint torque terms, and Kt, Kp, and Kv are scalar gating 

terms. 

 

The position and velocity controllers function together as 

a PD-controller to move the simulated arm towards the 

position decoder’s prediction of the monkey’s intended hand 

position, XD. The position controller uses the error signal,    ε 

= XD-XC, to generate τp according to (2): 
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where J
-1

 is the 2x2 inverse Jacobian for the KINARM, εx 

and εy are position errors in the X and Y direction and Ps and 

Pe are constant gain parameters. Similarly, the velocity 

controller generates joint torques proportional to the current 

angular velocities of the simulated arm according to (3): 
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where dθs/dt and dθe/dt are the angular velocities of the 

shoulder and elbow, Ds and De are constant gain parameters. 

Ps, Pe, Ds and De were tuned in simulation prior to the 

experiments. 

The position and torque decoders, implemented as Wiener 

Filters, predict the monkey’s intended hand position, XD, and 

the monkey’s intended joint torque, τt. In our approach, an 

estimate of “intended” hand position/joint torque is 

reconstructed from a linear combination of binned spike 

counts from the available neurons.  We employ a history of B 

= 20 bins of ∆t = 50ms each for every neuron, giving the 

Wiener Filters access to a total of one second of neural 

spiking history. Specifically, signal k (X or Y hand position, 

or elbow or shoulder torque) at discrete time bin t, is 

reconstructed as follows: 
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where i indexes over the C neurons, j indexes over time bins, 

∆t = 50ms is the bin size,  N(i, t) is the spike count of neuron 

i over time bin t, and A are the coefficients.  

As in our previous work, the coefficients for the decoder 

are solved for analytically using ridge regression that trades 

prediction accuracy on the training set for a smoother 

prediction surface [8]. Specifically, given T paired 

observations of spike counts N and signal S (of 

dimensionality TC × and TL × , respectively), we first 

construct a matrix M where each column represents one 

second of recent neural activity for each available cell at a 

given time point: 
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and a matrix Ŝ , where each column represents the set of 

signals to be predicted given the information contained in the 

corresponding column of M:  



















−−−−

−

−

=

)1,1()20,1()19,1(

)1,1()20,1()19,1(

)1,0()20,0()19,0(

ˆ

TLSLSLS

TSSS

TSSS

S

L

MOMM

L

L

. (6) 

The coefficients are solved for as follows: 
TTT

SMIMMA ˆ)(
1−

+= α , (7) 

where α is a regularization parameter that controls the 

tradeoff between explaining the training data set and 

smoothness. 

The simulated arm is a two-link arm model that represents 

the monkey’s arm in the KINARM robotic exoskeleton. The 

forward and inverse dynamics equations for the KINARM 

and the monkey’s arm have been described previously [7]. 

The mass and rotational inertia terms in the model are based 

on anatomical models of rhesus macaques [9] and 

measurements from our monkey and the KINARM.  

C. Experimental Procedure 

Prior to all experiments, the monkey used its arm to 

perform the RTP task (Active Movement, AM). While the 

animal performed this task, we recorded four minutes (4800, 

50ms bins) of spiking activity and movement data to train 

two decoders that predict cursor position or joint torque. The 

torques used to train the decoder were estimated from the 

observed arm trajectories and an inverse dynamics model 

that included both the KINARM and the monkey arm. 
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During the experiments, the monkey used a BMI to move the 

cursor in the same task based on the activity of an ensemble 

of recorded motor cortical neurons. The monkey was free to 

move his arm during the BMI conditions. 

We performed two sets of experiments to explore the 

behavior of the Hybrid BMI under various configurations. 

We fixed the value of Kv to 0.1 for all experiments in order 

to reduce the size of the parameter space.  We chose Kv such 

that it allowed us to explore combinations of Kt and Kp 

where τt and τp made similar contributions to the movement 

of the simulated arm. 

In the first experiments, we were interested in determining 

the combination of Kt and Kp that yielded the best BMI 

performance. First, we eliminated the contribution of the 

torque decoder (Position BMI, Kt = 0) and varied the 

magnitude of Kp from 0.05 to 1. Next, we fixed Kp at its 

best value (0.2) and varied Kt from 0 to 4 (Hybrid BMI) in 

order to determine the combination of Kp and Kt yielding 

the best BMI performance. In both experiments, the monkey 

performed approximately 50 trials in each session for each 

value of Kp or Kt.  

Next, we performed experiments designed to directly test 

the hypothesis that the Hybrid BMI would improve BMI 

performance relative to the Position BMI even at suboptimal 

Kp values. These experiments consisted of four conditions: 

Active Movement, Position BMI, Hybrid BMI and Direct 

Position BMI. During the Direct Position BMI condition the 

visual cursor position was controlled by the output of the 

position decoder, XD, instead of the hand position of the 

simulated arm. Each BMI condition was presented randomly 

in blocks of 50 trials following an initial block of the Active 

Movement condition.  

D. Electrophysiology 

The monkey was chronically implanted with a 100-

electrode microelectrode array (Blackrock Microsystems, 

Inc., Salt Lake City, UT) in MI contralateral to the arm used 

for the task. The electrodes on the array were 1.5 mm in 

length and were coated with iridium oxide.  During each 

recording session, signals from up to 96 electrodes were 

amplified (gain of 5000), band-pass filtered between 0.3 Hz 

and 7.5 kHz, and recorded digitally (14-bit) at 30 kHz per 

channel using a Cerebus acquisition system (Blackrock 

Microsystems, Inc., Salt Lake City, UT). Only waveforms 

that crossed a user defined threshold were used for real-time 

decoding.  The neural data used to train and drive the BMI 

during the experiments were comprised of single and 

multiunit spiking events that were sorted online.  On average, 

52.45 ± 1.12 (mean ± 1 standard error) neural channels were 

sampled during each BMI session. All of the surgical and 

behavioral procedures were approved by the University of 

Chicago Institutional Animal Care and Use Committee and 

conform to the principles outlined in the Guide for the Care 

and Use of Laboratory Animals. 

E. Kinematic Analyses 

To assess performance differences between the BMI 

conditions, we used two kinematic measures: 1) normalized 

time-to-target, and 2) normalized path length. The 

normalized time-to-target metric is defined as the time 

difference between consecutive target hits divided by the 

Euclidean distance between the targets. The normalized path 

length metric is defined as the path length of the cursor 

between consecutive targets divided by the Euclidean 

distance between consecutive targets.  

III. RESULTS 

We sought to demonstrate that the performance of a BMI 

decoding both kinematic and kinetic movement variables 

was superior to that of a kinematic controller alone. We 

determined the combination of Kp and Kt that yielded the 

best task performance by first finding the best performing 

Position BMI (i.e. varying the magnitude of Kp while 

holding Kt = 0). Examination of the cursor trajectories 

generated by the various Position BMIs showed that, as Kp 

increased, the time between consecutive target hits decreased 

(i.e. increased performance) and the relative length of the 

movement paths increased (i.e. movements became 

increasingly jerky) as shown in Fig. 2a. This tradeoff 

between movement speed and path straightness combined 

with qualitative observations of the monkey’s behavior led 

us to conclude that an intermediate value of Kp = 0.2 would 

provide the best compromise between straight and fast 

movements. Next, we fixed Kp = 0.2 and varied Kt in order 

to determine the combination of kinetic and kinematic 

controllers yielding the best task performance (Fig 2b). 

Similar to our observations when varying Kp, the time 

between target hits decreased as Kt increased. The cursor 

trajectories, however, straightened as Kt increased, reaching 

a minimum at Kt = 1.4 before becoming increasingly jerky as 

Kt grew larger. This suggested the best Hybrid BMI for Kp 

= 0.2 occurs at Kt = 1.4. We quantified the contribution of 

the position controller (τp) and torque decoder (τt) to the total 

torque (τ) generated by the Hybrid BMI by computing the 

ratio of root mean square torques from each part of the 

hybrid system, RMSτp/RMSτt. This specific combination of 

parameters (Kp = 0.2, Kt = 1.4) resulted in a ratio of 1.64. 

Based on the results of the first experiments, we wished to 

compare the best Hybrid and Position BMIs (Kp = 0.2) 

directly. However, due to the ambiguity in selecting the best 

Position BMI (Fig. 2a), we also performed separate 

experiments comparing the Position BMI and Hybrid BMI 

where Kp = 0.1 and 0.4. For these values of Kp, we 

estimated the values of Kt such that the ratio RMSτp/RMSτt 

would be similar to that observed for the best Hybrid BMI. 

This computation yielded Hybrid BMIs with parameters Kp 

= 0.1, Kt = 0.9 and Kp = 0.4, Kt = 2.2 having RMSτp/RMSτt 

ratios of 1.71 and 1.65, respectively. 

The monkey was able to perform the RTP task 

successfully using both the Position and Hybrid BMIs, 
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Figure 2: (a) Performance metrics for Position BMIs (Kt  = 0) as a function 

of Kp. Each black dot represents the mean performance over all reaches of 

a particular controller for one particular day on which it was tested. (b) 

Same metrics as in (a) plotted for Hybrid BMIs with Kp = 0.2 and a 

variable Kt. The data were fit by a quadratic model for each metric (gray 

line). The black dashed line represents performance in the active movement 

condition. 

 

achieving at least an 80% success rate (Table 1). Consistent 

with our hypothesis, we found that at least one of the 

performance measures improved in all cases when the 

monkey used the Hybrid BMI. The mean normalized path 

length decreased significantly in all the Hybrid BMI 

conditions compared to the corresponding Position BMI (p < 

0.05, two sample t-test). The monkey also generated faster 

target to target movements using the Hybrid BMI at Kp = 0.1 

(p < 0.05, two sample t-test). There was no difference in the 

mean time to target for the Hybrid and Position BMIs at Kp 

= 0.2 and 0.4 (p > 0.05). 

Similarly, the monkey was able to use the Direct Position 

BMI to perform the RTP task.  We included this condition in 

order to compare the Hybrid BMI to traditional kinematics 

based BMIs. A qualitative comparison of these BMIs reveals 

that the Direct Position and Hybrid BMIs perform similarly 

in both the mean time to target and path length metrics.  This 

comparison, however, is not fair in that the Hybrid BMI 

controls the movement of the virtual arm, while the Direct 

Position BMI only moves a massless cursor.   

We reconstructed the simulated arm movements of the 

Hybrid and Position BMIs offline to illustrate the tradeoff in 

path length and time to target that we observed when we 

varied Kp (Fig. 3). Here, the neural data recorded during 

Active Movement and the position and torque decoders 

(built on the same day) were used to compute the decoded 

hand position XD and the decoded torques τt. Given these 

inputs, we then integrated the forward dynamics model in 

time to produce simulated BMI trajectories. The high 

frequency components in the position and torque time series 

of the Position BMI illustrate the tradeoff. Though the 

monkey was able to acquire targets quickly online (Fig. 2a, 

Kp = 1), the increased path length, due to rapid changes in 

torque, made this particular Position BMI ultimately 

undesirable. By comparison, the best Hybrid BMI (Kp = 0.2, 

Kt = 1.4) produced smoothly varying torques resulting in 

straighter movements. 
 

TABLE  I 

PERFORMANCE METRICS FOR REACHES DURING THE ACTIVE AND BMI 

MOVEMENTS 

 Time to Target 

(s/cm) 

Path Length 

(cm/cm) 

Success Rate 

(%) 

AM 0.118 ± 0.0007 2.46 ± 0.01 95.7 ± 0.9 

Direct Position BMI 0.154 ± 0.0024 2.89 ± 0.04 85.7 ± 3.3 

Position BMI (0.1) 0.178 ± 0.0042 4.18 ± 0.11 79.2 ± 3.6 

Hybrid BMI (0.1) 0.157 ± 0.0028 2.39 ± 0.04 87.1 ± 4.9 

Position BMI (0.2) 0.170 ± 0.0035 3.72 ± 0.08 84.8 ± 0.6 

Hybrid BMI (0.2) 0.164 ± 0.0026 2.89 ±  0.05 89.6 ± 1.7 

Position BMI (0.4) 0.156 ± 0.0137 4.34 ± 0.35 96.8  

Hybrid BMI (0.4) 0.156 ± 0.0118 3.45 ± 0.26 92.4  

All values reported are mean ± 1 SEM. The value of Kp is indicated 

by the quantity in parentheses in condition titles [e.g. Hybrid BMI (0.2)]. 

Data in the Kp = 0.4 conditions were collected in a single session. 

IV. DISCUSSION 

Our results demonstrate the utility of decoding kinetic 

variables for real-time BMI control. In all the configurations 

we tested, the combination of kinetic and kinematic decoders 

in a Hybrid BMI resulted in cursor movements that were 

straighter and smoother than those observed using a Position 

BMI. Interestingly, we found that the RMSτp/RMSτt ratios 

for the best Hybrid BMIs we tested were greater than 1 

(ranging from 1.64 to 1.71) indicating a larger contribution 

of the position controller. Performance data showed that 

when the decoded torque became too large, the quality of 

movement degraded even though targets were acquired 

quickly. When Kt = 2.2, 3 and 4 (Fig. 2b), we observed a 

sharp increase in the path length due to oscillations in the 

hand trajectories. These oscillations were likely induced by 

large position errors resulting from the heavy influence of 

the τt torques.  

We should note that the optimum set of Kp, Kd, and Kt 

parameters will depend on the individual monkey. Because 

each monkey has different arm lengths and segment masses, 

the virtual arm model will be different for each monkey and 

will behave differently in response to the same joint torques. 

In future work we plan to use an offline optimization 

approach to estimate the optimum values for any given 

monkey. This strategy will allow us to avoid the process of 

experimentally exploring the parameter space for each new 

monkey. 

Our explorations of the Hybrid BMI parameter space were 

somewhat limited in scope because we fixed the four 

parameters of the PD controller (Ps, Pe, Ds and De; see 

equations 2 and 3) and manipulated only Kp and Kd. In 

addition, we set the value of Kd at 0.1 in an attempt to 

balance the torques generated by the position controller and 

torque decoder. Although this constraint helped us to find 
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good Hybrid BMIs, it also made Position BMIs with larger 

values of Kp less viable because they were underdamped. In 

future work we plan to eliminate the constraint on Kd and to 

allow our Position and Hybrid BMIs to use different sets of 

PD parameters optimized in offline simulations. This will 

allow Position BMIs to use larger PD parameters, while the 

Hybrid BMI will be able to use smaller parameters to 

maximize the contribution of the torque decoder.  

Our work is limited in that we tested the Hybrid and 

Position BMIs in one dynamic context. Future work will 

involve testing the ability of these BMIs to adapt to different 

dynamic contexts. The simulated arm included in the Hybrid 

BMI allows us to test the ability of a BMI to adapt its 

dynamic output according to the demands of the task. 

 

 
Figure 3: Time series comparing movements in the Active Movement 

condition (blue line) to offline reconstructions of simulated arm position 

using the Hybrid (red line; Kp = 0.2, Kt = 1.4) and Position (black line; Kp 

= 1, Kt = 0) BMIs. The Cartesian position and joint torque of either the 

monkey’s arm or the simulated arm are represented by X, Y, τs and τe. 

Dashed lines show the times at which a target was hit during Active 

Movement. Note the large, high frequency torques generated by the 

Position BMI and the small reversals in the movement trajectories that 

result.  

 

Although we showed that the monkey was successfully 

able to use the Position BMI with no contribution from the 

torque decoder, it is interesting to note that the monkey was 

unable to perform the task using a pure Torque BMI (i.e. Kt 

= 1.0, Kp = 0). We believe that this demonstrates that a 

Torque BMI is radically different from one having a strong 

position component. Further investigations of a Torque BMI 

may require a behavioral task requiring precise control of 

joint torque allowing the monkey to make a seamless 

transition from normal behavior to Torque BMI control. 
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