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Abstract—This paper proposes an innovative ambulatory 

mobility and activity monitoring approach based on a wearable 
datalogging platform that combines inertial sensing with GPS 
tracking to assess the lifespace and mobility profile of 
individuals in their home and community environments. The 
components, I/O architecture, sensors and functions of the 
WIMU-GPS are presented. Outcome variables that can be 
measured with it are described and illustrated. Data on the 
power usage, operating autonomy of the WIMU-GPS and the 
GPS tracking performances and time to first fix of the unit are 
presented. The study of lifespace and mobility with the WIMU-
GPS can potentially provide unique insights into intrapersonal 
and environmental factors contributing to mobility restriction. 
On-going studies are underway to establish the validity and 
reliability of the WIMU-GPS in characterizing the lifespace 
and mobility profile of older adults.  

I. INTRODUCTION 
In older adults over 65 years of age, the prevalence of 
impaired mobility varies between 7.7% and 35% [1]. 
Mobility is broadly defined as the ability to move oneself  
(e.g., by walking, by using assistive devices, or by using 
transportation) within community environments that expand 
from one’s home, to the neighborhood, and to regions 
beyond [2]. It is also a fundamental part of self-care 
activities and instrumental activities of daily living (ex; meal 
preparation, homemaking, shopping, leisure) within an 
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individual's place of residence or the community. Normal 
aging is associated with declines and deficits in a number of 
physiological systems that are essential for mobility: 
balance, strength, sensory detection and integration, motor 
coordination and cognitive processing. These declines can 
be accelerated by musculo-skeletal and neurological diseases 
such as osteoarthritis, stroke, Alzheimer’s and Parkinson’s 
(PD) as well as by the effects of injury. Preserving mobility 
has now become a critical part of maintaining function and 
preventing further disability in older adults and adults with 
disease [3]. Understanding the determinants of mobility 
disability is essential in developing interventions aimed at 
preserving mobility in older adults.  

The determinants of mobility disability have traditionally 
been studied using outcomes from laboratory (motion 
analysis), clinical (observational) and community (self-
report) approaches. Overall, these approaches have trade-
offs in terms of precision/accuracy, validity/reliability, 
time/cost, training/expertise, participant burden and real-
world generalization and are often just a proxy for the 
mobility of the individual, as they fail to capture the 
dynamics between the environment, the intrapersonal factors 
of mobility restriction and the real life expression of this 
mobility [4]. With the advent of miniaturized body-worn 
sensing technology, it is now possible to collect and store 
data on different aspects of human movement and mobility 
under free-living conditions over long periods of time. For 
example, over the last 10 years, inertial sensing of motion 
has proven to be a suitable alternative to traditional image-
based motion analysis systems in several clinical 
applications [5]. Advances in geotracking (Global 
Positioning System-GPS) and geocoding (Geographic 
information system-GIS) methods have allowed health 
researchers to efficiently track and model behaviors such as 
out-of-home mobility in the time-space domain and measure 
access to built-environment resources and exposure to social 
problems or risks [6]. 

In this paper we propose an innovative mobility and 
activity monitoring approach based on wearable inertial 
sensors with GPS tracking, data logging capabilities and an 
external mobility sensor interface, to study the determinants 
of ecological mobility in aging and disease. At the core of 
this approach is an activity-monitoring platform called 
Wireless Inertial Measurement Unit with GPS (WIMU-
GPS). The first part of the paper describes the architecture of 
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the system and its components. The second part illustrates 
outcome variables used to assess lifespace and activity of 
individuals. The third part presents performance data 
obtained in the preliminary validation of the platform.  

II. WIMU-GPS PLATFORM AND  
DATA ARCHITECTURE 

The WIMU-GPS consists of a datalogger with embedded 
sensors and I/Os that can be connected to external sensors 
(Figure 1). The dimensions of the platform are: 4.5 cm 
(width) by 7.2 cm (length) with a 1.6 cm thickness.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Overview of WIMU-GPS platform a) Printed circuit board (PCB) 
with components and battery. B) Encapsulated PCB with face cover and 
controls. 

The sensors and components embedded into the WIMU-
GPS (Figure 2a) consist of the following: an inertial 
measurement unit (IMU), a GPS positioning device, a 
communication module (Zigbee and USB), a datalogging 
module on a microSD card and a power module (battery and 
charger). The IMU sensor consists of a triaxial 
accelerometer, a triaxial gyroscope and a triaxial 
magnetometer. Both the accelerometer and the gyroscope 
provide analog signals and are wired directly to the analog to 
digital converter (ADC) of the microcontroller. The 
magnetometer, also part of the IMU sensor is wired through 
the I2C communication port of the microcontroller. These 
signals, amongst others, are recorded on a removable 
microSD card and later fed to a dedicated fusion algorithm 
based on an adaptive Kalman filter. These post-processing 
calculations enable pitch, roll and yaw angle measurements 

of the module. The SIRFstar III global positioning system 
(GPS) receiver provides the microcontroller with a digital 
datastream of user selected binary SIRF data including 
latitude, longitude, altitude and details about the satellite 
constellation seen by the unit. Data is sent through the 
Universal Asynchronous Receiver Transmitter (UART) port 
of the microcontroller. A second UART port enables USB 
communication with an external computer. Wireless 
communication can also be accomplished using the Zigbee 
communication module (connected using a Serial Peripheral 
Interface (SPI) port on the microcontroller). User interface is 
done using 2 push-buttons (WIMU On/Off and events 
marking) and five LEDs for status information. The heart of 
the circuit is an 18-megahertz low power 16-bit 
microprocessor with 256 Kb of flash memory and 16 Kb of 
RAM. All unused communication lines (both analog and 
digital) are routed to an external I/O connector providing 
further sensor connectivity.  

 

 
 
Figure 2. Overview of WIMU-GPS a) WIMU-GPS components and I/o 
architecture and b) data flow. 

Data flow (Figure 2b) includes a pre-processing step that 
implements a power-management scheme required to 
provide long-term monitoring and recording of sensor data. 
The platform can be used to partially process the data on-
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board, reducing the size of that data and allowing real-time 
computations of variables. Besides logging the data in a 
local memory, the WIMU-GPS can also transmit all the 
collected data over a wired or wireless link. Using an 
external analysis software or system, data can be post-
processed to generate variables of interest for the specific 
application the platform is used in. 

III. METHODS FOR LIFESPACE AND  
ACTIVITY ASSESSMENT  

Figures 3 and 4 illustrate recordings from the 3D 
accelerometers and the GPS receiver on WIMU-GPS worn 
on the trunk by an older adult (female 71 years of age) and a 
university student (female 23 years of age) for 5 consecutive 
days. The following section describes the variables extracted 
from these recordings. 

A. Lifespace assessment 
In recent years, the measure of an individual’s lifespace 

has been proposed as a better way to capture both the 
functional and psychological aspects of mobility while 
offering a better reflection of actual mobility performance 
[7]. Lifespace can be defined as the size of the spatial area a 
person purposely moves through in daily life, as well as the 
frequency of travel within a specific time frame [8]. The 
measure thus not only captures the actual spatial extent of 
movement but also the desire for movement and being 
involved in the larger social environment. The majority of 
previous research on lifespace assessment has been reliant 
on subjective self-report methodologies [9]. Innovations in 
GPS technology have opened the door to the development of 
portable and wearable GPS tracking devices that can be used 
to measure time-location data of human activity and assess 
the lifespace of an individual [10]. Using longitude and 
latitude data from the GPS receiver and a known reference 
point (the home), total area in km2 of the mobility sphere 
(standard deviational ellipse of all geocoded data recorded), 
axis ratio of the mobility sphere, average of distances 
traveled per day during multiple days of recordings can be 
computed using spatial statistics [11, 12]. 

Figure 3 illustrates the lifespace determined from the 5 
days of GPS recordings for the older adult and the university 
student. In figure 3A, individual ellipses show the area 
covered by the subject (including 95% of the GPS points) 
over the 5-days period. Squared dot indicates the subject’s 
home while the circular dot indicates the mean center of the 
ellipse. In figure 3B, results over each of the 5- days and 
over all days are combined. Distance is the total distance 
moved by the subject. Max distance is the farthest distance 
from home the subject reached for the period. Area is the 
surface of the ellipse, a larger area expressing greater 
displacement coverage for the subject. Ellipse axis ratio is 
the ratio of the small and large axes. The closer the ratio to a 
“1” value, the closer the ellipse is to a perfect circle. Results 
clearly show that the lifespace of the older adult expressed 
as the surface of the ellipse over the 5 day period represent 
only about 0.6 % of the lifespace of the young subject. 

 
 
Figure 3 Lifespace determined from 5 days of GPS recordings using the 
WIMU-GPS for an older adult and a university student.  

B. Activity assessment 
Accelerometry is often used to monitor mobility-related 

activities in older adults and people with different 
neurological and musculoskeletal conditions. Variables 
combining frequency and intensity of movement as well as 
orientation of body segments can be used to monitor a range 
of different movements, including gait, sit-to-stand transfers, 
postural sway and falls, to measure physical activity levels 
and to identify and classify movements performed by 
subjects [13]. In figure 4A, the amplitude of the acceleration 
vector (vector computed from each acceleration axis using 

x2 + y2 + z2 ) recorded in a 12-hour period over 5 
consecutive days for the young subject is presented. In 
figure 4B, active time is calculated using the density of 
acceleration's peaks. Active time was estimated by 
extracting the temporal density of the acceleration signals. 
Raw signals from separate axes were combined, low-pass 
filtered (Butterworth, 1 Hz, 2nd Order), rectified and high-
pass filtered (Butterworth, 5 Hz, 2nd Order). Data was then 
saturated in order to obtain a binary signal. Samples with a 
value above the noise baseline (15 mV), were considered as 
movements and were associated with a logic high state 
(ones). All other samples were set to a low state (zeros). A 
rectangular rolling window with a length of 10 seconds 
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extracted the envelope of the binary signal and attenuated 
isolated peaks of acceleration, which were not related to 
physical activity, thus generating a signal with values 
varying between 0 and 1. Another threshold, optimized from 
previous recordings on a cohort of older adults, was fixed at 
0.5. Every sample equal to or above 0.5 was considered as 
movement. The cumulative of these samples yielded an 
estimate of active time. In figure 4C, percentage of the time 
in a 12-hour day where the young and old subjects were 
considered to be active according to the calculation displayed 
in figure 4B. Cumulative statistics over the 5 days are shown 
in figure 4D. Results illustrate that the young subject was 
more active (about 50% more) than the old subject, as shown 
by the mean active time. The accuracy of this method was 
assessed by comparing time and motion measures during 62 
real life physical therapy sessions with estimates of active 
time obtained with a 3D accelerometer module positioned at 
the hip of patients receiving treatments [14]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 4. Activity detection and active time calculation 

IV. RESULTS 
Design choices for the components used in the WIMU-

GPS were made with the objectives of a) insuring a 
minimum monitoring time of at least 24 hours with the 
embedded sensors (i.e. IMU and GPS) under a motion based 
power management scheme b) reliable and accurate GPS 
tracking when worn on by the subject. Results of the power 
usage and performance of the GPS receiver when worn on 
the arm and trunk are described below.  

A. Power usage of WIMU-GPS and operating autonomy 
Table 1 shows the power (mW) drained by each individual 

component of the WIMU-GPS platform and its relative 
impact on the embedded 3700 mW battery. Power 
consumption was measured experimentally by shutting 
down and activating only a subsystem of the platform at 

once. Current measurement was done directly at the battery 
with an ampere-meter. As expected, the GPS subsystem and 
the Zigbee radio have the highest power requirement. Full 
on autonomy (with the Zigbee radio transmitting half of the 
time) is about 10 hours. Monitoring autonomy without the 
use of the radio is about 13,6 hours. Activity and mobility 
monitoring autonomy can be increased by using a motion 
based power management scheme that turns off the GPS 
when there is no activity, when the GPS is unable to acquire 
a position fix or when the GPS accuracy is too low to 
provide enough useful information. Tests are on-going to 
assess the best combination of parameters for the power 
management scheme. Under standby mode with power 
management on, the autonomy is about 99 hours. 

 
TABLE 1. POWER USAGE OF WIMU-GPS AND OPERATING AUTONOMY  

 
Module Active 

Power 
(mW) 

% 

CPU 17.17 4.1 % 
Accelerometers 20.16 4.8 % 
Gyroscopes 41.2 9.8 % 
Magnetometer 14.36 3.4 % 
GPS 113.7 27.0 % 
Zigbee (Stand-by) 44.9 10.7 % 
Zigbee (RX-TX) 103.3 24.5 % 
Datalogger (microSD) 66.1 15.7 % 
TOTAL 420.9 100 % 
Full-On Autonomy (h)* 10.0 
Monitoring Autonomy (h) ** 13.6 
Motion Detection for power 
Management (h) *** 

99.1 

* All systems on with no power management, radio at 50% TX;  
** All systems on except radio and with no power management. 
*** CPU and accelerometers on for power management scheme. 

B. GPS tracking performances and time to first fix (TTFF). 
To characterize the WIMU-GPS TTFF, it was compared 

to a commercial GPS data-logger (IGotU GT-120 from 
MobileAction). Both systems use a passive antenna and the 
same GPS chipset. A person wore both systems at two 
specific positions, arm and trunk, over a pre-defined 
trajectory (Figure 5). Data was collected over 10 different 
days to force the worst-case scenario: different satellite 
constellations requiring a full ephemeris download, also 
referred as a “cold start”. Figure 5 illustrates best (blue) and 
worst (red) TTFF position data for both GPS systems across 
10 days. The test involved walking, following a defined 
path, stopping for a minute in the “upper left” corner of the 
trajectory, entering a building for 30 minutes, then starting 
the outdoor path again. As expected, accuracy inside the 
building was low, explaining the erratic measures recorded 
at that time. Table 2 shows the GPS time to first fix 
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measurement, for each of the conditions. With both systems, 
arm TTFF was quicker than trunk TTFF, since that position 
gives a better clear view for the passive antenna. The IGotU 
performed better than the WIMU-GPS in that condition. 
However, when worn on the trunk, the WIMU-GPS is able 
to get a quicker fix than the IGotU. Globally, performance of 
the WIMU-GPS platform is adequate for activity 
monitoring, with a TTFF varying between 0:59 and 14:05, 
depending on the sensor position. 

 

 
 
Figure 5. Trajectory comparison of the two GPS systems with the best 
(blue) TTFF and the worst (red). 
 

TABLE 2. GPS TIME TO FIRST FIX UNDER COLD START SCENARIO (TTFF) 
 

 WIMU-GPS IGotU-120 
 Trunk Arm Trunk Arm 
Best TTFF (s) 86 59 61 43 
Worst TTFF (s) 845 332 2942 149 
Mean TTFF (s) 294 191 571 113 
STD TTFF (s) 208 84 911 29 

V. CONCLUSION 
The combination of inertial sensing and GPS tracking in a 

light and compact wearable form factor with extended 
datalogging capabilities offers interesting possibilities to 
explore real life mobility of individuals with minimal 
interference in their daily activities. The WIMU-GPS 
platform initial specifications and performance show 
promising results for long term monitoring. The autonomy 
of the WIMU-GPS will however be a key factor in the 
generalization of this approach. While the autonomy can be 
enhanced with motion based power management and 
adjustment to the GPS chipset functions (duty cycle, sleep 
mode, trickle power mode, etc…), optimization will be 
needed as these implementations can also affect the accuracy 
and tracking performance of the GPS receiver under the 
condition of use tested (i.e. cold starts, in or out of buildings 
etc…). The study of lifespace and mobility can potentially 
provide unique insights into intrapersonal and environmental 
factors contributing to mobility restriction. External I/O 
allowing connection of various physiological sensors such as 
oxymeter, EMG and voice activity detection could enhances 
the range of potential applications of the platform. Further 
studies will however be needed to establish the validity and 
reliability of the WIMU-GPS in characterizing the lifespace 
and mobility profile of different patient populations.  
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