
  

  

Abstract—Fall prevention in elderly subjects is often based 
on training and rehabilitation programs that include mostly 
traditional balance and strength exercises. By applying such 
conventional interventions to improve gait performance and 
decrease fall risk, some important factors are neglected such as 
the dynamics of the gait and the motor learning processes. The 
EU project "Self Mobility Improvement in the eLderly by 
counteractING falls" (SMILING project) aimed to improve 
age-related gait and balance performance by using unpredicted 
external perturbations during walking through motorized 
shoes that change insole inclination at each stance. This paper 
describes the shoe-worn inertial module and the gait analysis 
method needed to control in real-time the shoe insole 
inclination during training, as well as gait spatio-temporal 
parameters obtained during long distance walking before and 
after the 8-week training program that assessed the efficacy of 
training with these motorized shoes. 

I. INTRODUCTION 
ait characteristics such as stride velocity and gait 
variability during simple and dual task conditions have 

been used for fall risk assessment in elderly persons. A 
number of studies have shown that miniature body-worn 
inertial sensors can be used for estimation of important 
spatio-temporal gait parameters and their variability [1]. The 
advantages of these wearable technologies compared to 
traditional “gait lab” approaches are mainly their practical 
usefulness outside a laboratory, where longer walking 
distance in a natural setting can be performed. Nevertheless, 
the sensor configuration, the total weight of the system and 
the power consumption should be minimal while the 
physical integration of the sensors, memory and 
conditioning electronics with garments and attachment tools 
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should be improved. Most  current studies monitor gait "off-
line", using recorded kinematic signals and dedicated 
algorithms. On-line gait phase detection has been addressed 
for the control of drop-foot stimulator using accelerometers 
[2], but such real-time applications remain rare, and lack 
implementation in wearable solutions, or testing in real 
conditions, or for rehabilitation purpose. We previously 
proposed and validated a gait analysis system based on 
double pendulum model with four gyroscopes on the lower 
limbs (one uni-axial gyroscope on each shank and thigh) [3]. 
The system can be reduced to two gyroscopes on shanks by 
predicting the signal of thigh sensors [4]. However, this 
model was 2D and required the knowledge of both thigh and 
shank length. 

Fall prevention in elderly subjects is often based on 
training and rehabilitation programs that include mostly 
traditional balance and strength exercises. By applying such 
conventional interventions to improve gait performance and 
decrease fall risk, some important factors are neglected such 
as the dynamics of the gait and the motor learning processes. 
The EU project "Self Mobility Improvement in the eLderly 
by counteractING falls" (SMILING project: 
http://www.smilingproject.eu/) aimed to improve age-related 
gait and balance performance by using unpredicted external 
perturbations during walking through motorized shoes that 
change insole inclination at each stance. This paper 
describes a 3D method for gait analysis using the foot 
orientation and trajectory during each cycle based on two 
inertial modules (S-sense) worn on each foot. By real-time 
detection of gait phases, the modules can also control a 
motorized shoes designed for a new gait and balance 
rehabilitation program in elderly persons. Using data 
transmitted by the modules during long distance walking 
periods, a dedicated algorithm provides relevant gait 
parameters for outcome evaluation of the rehabilitation 
program.  

II. METHODS 

A. Shoe-worn inertial module 
A wireless inertial sensor module referred as ‘‘S-sense’’ 

has been designed which integrating microcontroller, radio 
transmitter, memory, three-axis accelerometer (ADXL, 
Analog Device), three-axis gyroscope (ADXRS, Analog 
Device) and batteries [5]. S-sense module is small 
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(57x41x19.5 mm3) and low power (18.5mA at 3.6V) and 
can be fixed easily on different type of shoes. It can record 
and transmit wirelessly kinematic signals with 12bit 
resolution at 200Hz during 24 hours (Fig. 1). 

B. Embedded real-time walking phase detection 
Within each S-sense module, a walking phase detection 

algorithm (WPD) allows to detect swing and stance phase of 
gait in real-time. This information can be used as feedback 
for cueing and actuating device. WPD consists in a loop 
running at each new signal sample acquired during gait by 
the gyroscope mounted around pitch axis of the foot (Fig.2), 
and included in S-sense. 

As illustrated in Fig.2, Mid-swing, Heel Strike and Toe 
off are noticeable by peak and valleys in the pitch angular 
velocity signal. These events were detected by adequate 
peak detection algorithms [6]. For real time detection of 
Stance/Swing phase, a state variable was first set to 1 for 
swing phase and 0 for stance phase. During Swing (state=1), 
if the algorithm detected heel-strike or reached the maximal 
swing duration, the state as well as the output variables were 
set to 0. In Stance (state=0), after minimal stance duration, if 
toe-off is detected then the output variable was set to 1 while 

state was also set to 1. In the case where the algorithm 
detects Midswing without detecting toe-off, the state was set 
to 1 but output variable was set to 0, because it means swing 
phase was detected too late for the actuators to respond 
before next stance phase. In conclusion, actuators were only 
triggered when output variable was equal to 1, i.e. when the 
beginning of swing phase (Toe off) was found. Although the 
detection of Mid-swing is not important for the output 
variable, it was a critical aspect that gives robustness to the 
algorithm by preventing false detection of Toe off at 
HeelStrike in the case where Toe off was not detected 
previously, because Toe off and Heel Strike features are 
quite similar.   

Algorithm was implemented in S-sense microcontroller. 
Its robustness was then evaluated in 5 healthy subjects 
wearing Smiling Shoes with S-sense and performing several 
gait trials at self-selected speed, including turns. 

C. Application to neuro-rehabilitation 
Two S-sense modules were inserted in a pair of motorized 

shoes developed for gait training (Fig.3). 
Each shoe comprises four individually controlled 

actuators, two on the heel and two in the forefoot, which can 
modify the sole inclination [7]. Using WPD algorithm, sole 
inclination was modified during each swing phase based on 
a chaotic algorithm [8]. This way, the motorized shoes 
generate unpredicted perturbation during the stance phase. 
The expected effect on the subject wearing the motorized 
shoes is to simulate neural plasticity that limits walking 
ability and therefore to enhance the flexibility of the motor 
control system, resulting in improved stability.  

The study followed a randomized cross-over design. 
Following a baseline evaluation that included gait, balance, 
and physical performance assessment (POMA), subjects 
(N=22) were randomized to a first 4-week period of training 
with the active (SMILING) shoes (N=11) or with inactive 
(i.e., DUMMY) shoes (N=11) of similar weight. The 
training program included walking exercises of increasing 
difficulty with addition over time of motor and cognitive 
dual-tasking. At the end of this first training period, all 
subjects underwent a similar assessment of gait, balance, and 
physical performance. After a one-week wash-out period, 
subjects switched to the other pair of shoes (i.e. SMILING to 
DUMMY and vice-versa), and completed an additional 4-
week training period with similar gait training exercises of 
increasing difficulty. Once completed, a final gait, balance, 

 

 
Fig. 1. S-sense module (a) composed of seven blocks (b): 
microcontroller (MCU), radio transmission, memory (SD-card), 
inertial sensors (3D accelerometer, 3D gyroscope), serial mode 
(USB/UART switch) and a power supply (PSU) 
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Fig. 2. Pitch angular velocity of foot during swing and stance phases 

  
Fig. 3. Structure of the shoe with actuators controlled by the WPD of S-sense 
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and physical performance assessment was performed. The 
University of Lausanne ethical committee approved the 
protocol. 

D. Gait analysis 
For each session, gait analysis was performed using a 6-

Minute Walk Test (6MWT) [9] on each subject wearing S-
sense modules on shoes. The 6MWT was preferred since it 
allows estimating gait variability over a long-distance. The 
walking course was 25m. The turnaround points were 
marked with a cone. 

A gait analysis algorithm was designed to estimate spatio-
temporal parameters based on the 3D kinematics of the both 
feet recorded by S-sense modules [10]. Among these 
parameters the following five parameters were considered in 
this study and were estimated for each cycle: 

• Stride length (SL) was defined as the distance 
measured between two successive foot-flat positions of the 
foot.  

• Foot clearance (FC) was defined as the maximal foot 
height during swing phase relative to the height at foot-flat. 

• Stride velocity (SV) was considered as the mean value 
of foot velocity in forward direction during gait cycle. 

• Turning Angle (TA) was defined as the relative change 
in foot heading (or azimuth), between the beginning and the 
end of gait cycle.  

• Gait Cycle Time (GCT) was defined as the time 
between two successive heel-strike events. 

The precision of the above parameters were estimated in a 
previous study by using optical motion capture as reference. 
We obtained a precision of 6.5% for Stride Length, 5.8% for 
Stride Velocity, 8.4% for Foot clearance and 6.1° for 
Turning Angle [10]. 

  Gait variability was quantified by considering the stride-
to-stride fluctuations in walking expressed by standard 
deviation (SD) of the gait parameters and its coefficient of 
variation (CV= SD/mean). Moreover, in order to illustrate 
the dynamic of gait variability and to quantify the 
‘complexity’ of the gait pattern, we used Symbolic entropy 
(SEn) [11], [12]. Symbolic time-series analysis involves the 
transformation of the original time series into a symbolic 
sequence of few distinct values (e.g., binary sequences of 0 
and 1) and the construction of words from the symbol series. 
After defining the word length (l = 3) the Shannon entropy 
was calculated on the word frequency in the symbolic 
sequence [12]. These two parameters (i.e. CV and SEn) 
express different nature of gait variability. While lower CV 
or SD quantify a more regular stride-to stride walking 
patterns, a higher SEn characterize a more complex and 
improved walking dynamics. 

In order to estimate the usefulness of gait parameters to 
compare gait pattern between young and elderly, ten young 
healthy volunteers (age 26.1±2.8 years), and ten fit elderly 
volunteers (age 71.6±4.6 years), took part in the study. 

III. RESULTS 

A. Walking phase detection 
A total of 778 cycles were recorded on 5 healthy subjects 

wearing Smiling Shoes with S-sense and performing several 
gait trials at self-selected speed, including turns. The signal 
from the pitch gyroscope and WPD output was recorded 
wirelessly in real-time. After a manual counting of the gait 
cycles was performed, we obtained a sensitivity of 93.6% 
with 728 successfully detected cycles, and a specificity of 
100% (no false detection). Unsuccessful detection more 
likely occurred during gait initiation and during turns, where 
the pitch angular velocity pattern was altered. 

B. Gait metrics in young and elderly 
Gait performances in elderly and young subjects were 

compared during a 6MWT. A total of 10,515 gait cycles 
were recorded among the 20 subjects. Turning Angle was 
used to separate periods of turn (every 25 meters) and 
straight walking for analysis. The other gait parameters and 
their variability were reported in Table 1 and Table 2. 

Whereas relatively small, non significant-differences 
(p>0.05), between mean value of Stride Length and Stride 
Velocity were observed, Foot-clearance appeared to 
significantly discriminate performance between the two 
groups. During turns, Stride Length, Stride Velocity, and 
Foot clearance were significantly reduced in all subjects 
compared to period of straight walking (p<0.02 for all mean, 
SD, and CV of those parameters). Interestingly, the 
differences in mean gait parameters between Young and 
Elderly groups were larger during turns. In addition, mean 
and SD values obtained during straight walking were 
consistent with values found in the literature for samples of 
fit elderly and young healthy subjects [13]. 

C. Gait parameters before and after rehabilitation 
Overall, results over the entire trial showed that subjects 

significantly increased the distance walked during 6 MWT 
and the balance score (POMA). However, there was no 
significant differences when comparing training periods 
using SMILING vs DUMMY shoes. Trends were noticed in 
walking speed that constituted the study’s primary outcome 
and approached the minimal clinically important difference 

TABLE 2   GAIT VARIABILITY IN YOUNG AND ELDERLY GROUPS 
 CV(GCT) CV(SL) CV(SV) CV(FC) SEn(GCT) 
Elderly 3±0.92 5.7±2.6 7±2.8 4.4±1.9 1.49±0.41 
Young 2.6±0.97  4±1.38  5.1±1.75  4±0.9  1.74±0.34  
p-value 0.4 0.09 0.06 0.9 0.1 
Gait variability in straight walking averaged over 6MWT of young (10 
subjects) and elderly (10 subjects) groups 

TABLE 1  GAIT PARAMETERS IN YOUNG AND ELDERLY GROUPS. 
 GCT, s SL, m SV, m/s FC, m 

Elderly 1.12±0.08  1.31±0.10 1.20±0.10 0.24±0.02 
Young  1.15±0.07 1.34±0.12 1.19±0.11 0.27±0.02 
p-value 0.6  0.7 0.9 0.02 

Gait parameters of straight walking were averaged over 6MWT of 
young (10 subjects) and elderly (10 subjects) groups. Turning angle 
TA was used to extract straight walking periods 
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in gait speed for the SMILING group. The minimal 
clinically important difference (MCID) is the amount of 
change that is clinically important to elderly subjects. 
Several studies have reported MCID for walking speed in an 
elderly population that range between 0.05m/s to 0.1 m/s 
[14]. The SMILING group participants increased their mean 
gait speed during the first period of 4 weeks by 0.05m/sec 
(from 1.48 to 1.53 m/s) while the DUMMY group kept same 
speed (1.39m/s). 

IV. DISCUSSION 
In this study we reported the development and evaluation 

of a wearable 6D inertial measurement system, S-sense for 
gait stimulation and monitoring. With S-sense, an algorithm 
was devised for real-time walking phase detection to control 
motorized shoes. It was possible to change the insole 
inclination at each stance in a chaotic way to better stimulate 
the motor learning process during walking. The outcome of 
this new neuro-rehabilitation technique was evaluated by 
gait metrics derived form wearable S-sense modules 
extracted during long distance walking.  

The new shoe worn inertial system was able to provide 
main spatio-temporal gait parameters and to evaluate both 
variability and complex dynamic of these parameters. To our 
knowledge, this is the first time that gait parameters, such as 
foot horizontal turning angle and foot clearance were 
estimated outside a laboratory and during long distance 
walking. Actually, Turning angle is an important outcome to 
evaluate gait in Parkinson disease [4] and Foot-clearance 
which was the most discriminative parameters between our 
group of subjects could also be an important new gait 
parameters to estimate risk of fall in elderly [15]. 

Using 6MWT, we estimated walking variability and its 
dynamics.  Though a certain amount of stride-to-stride 
variability allows adaptability to external perturbations (e.g. 
change in direction and speed, obstacle avoidance), high 
variability is usually associated with impaired motor 
function. As such, higher stride-to-stride variability with age 
was confirmed in this study by higher coefficient of 
variation (CV) in elderly subjects compared to healthy 
young subjects. When considering walking as a dynamic 
biological system, higher dynamic range and complex 
variability enable the organism to rapidly respond to internal 
and external perturbations. The non-linear gait variability 
metrics (i.e. SEn) in this study corroborated this aspect as we 
found that those metrics tend to decrease with age, implying 
a less complex and frailer behavior. This is in agreement 
with a well-known loss of complexity with aging [16]. 

The SMILING training program with motorized training 
shoes requires to adopt a new approach to improve neural 
plasticity in a natural way. While a certain positive trend in 
gait parameters was observed after this training program, 
much more measurements with higher sample size are 
needed before reaching final conclusions. 
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