
  

 

Abstract—While many studies have reported on the use of 

kinematic analysis on well-controlled, in-laboratory mobility 

tasks, few studies have examined the challenges of recording 

dynamic mobility in home environments. This preliminary 

study evaluated whole body mobility in eleven patients with 

Parkinson disease (H&Y 2-4). Patients were recorded in their 

home environment during scripted and non-scripted mobility 

tasks while wearing a full-body kinematic recording system 

using 11 inertial motion sensors (IMU). Data were analyzed 

with principal component analysis (PCA) in order to identify 

kinematic variables which best represent mobility tasks. 

Results indicate that there was a large degree of variability 

within subjects for each task, across tasks for individual 

subjects, and between scripted and non-scripted tasks. This 

study underscores the potential benefit of whole body multi-

sensor kinematic recordings in understanding the variability in 

task performance across patients during daily activity which 

may have a significant impact on rehabilitation assessment and 

intervention.  

I. INTRODUCTION 

HE identification of intrinsic obstacles imposed by age 

and illness and extrinsic obstacles imposed by the 

physical environment is critical in helping elders and 

persons with disease maintain an optimal level of functional 

mobility, personal independence and quality of life. Without 

intervention, these barriers increase the risk of adverse 

events such as falls, as well as causing reduced mobility due 

to fears of these adverse events. Mobility has traditionally 

been measured using laboratory (instrument), clinical 

(observational) and community (self-report) approaches. 

These approaches have trade-offs in terms of 

precision/accuracy, validity/reliability, time/cost, 

training/expertise, participant burden and real-world 

generalizability. Laboratory research is fundamental to 

understand mechanistically how these intrinsic and extrinsic 

obstacles affect mobility in aging or diseased populations. 

However, the impact of intrinsic and extrinsic obstacles 

described in laboratory research does not necessarily reflect 

those observed when a person is navigating within their 

home or community. It is then difficult to make inferences 

about the real-life challenges facing aging individuals and 

those having motor impairments such as patients with 

Parkinson disease (PD). 

Wearable sensors for home monitoring of different 

aspects of physiology related to health status have been 
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extensively used for applications such as post-operative 

evaluation [1], increased telepresence in telerehabilitation 

and fall detection [2,3], general emergency situations [4], 

crude movement & heart monitoring [5], and vital signs 

monitoring [6,7]. Numerous biomechanical sensing 

approaches have been proposed to enhance in-home 

monitoring [8,9]. Systems for estimating the risk of falls 

based on standing up and sitting down movement analysis 

[10] or gait analysis [11] have been proposed. Similar 

studies have investigated ambulatory monitoring and 

quantification of motor conditions in PD, such as in tremor 

[12,13,14] bradykinesia [15] ON-OFF states [16,17] and 

dyskinesia [18,19]. However, for most of these studies, the 

number of sensors and sensor placement on the body has 

been decided based on educated guesses and depending on 

the specific questions to be examined. This means that the 

collected data only provided information about one specific 

aspect of mobility, neglecting potential features of mobility 

that might be more relevant to identify home mobility 

challenges. This is not to say that two sensors cannot for 

some purposes do the work of many. In fact, data reduction, 

i.e., reducing the number of sensors to a minimum, should 

be the ultimate goal for practical application. However, 

restricting the data collected at the outset may lead to 

important information being missed. For a particular group 

of subjects navigating in their home environment, the 

following questions can be considered: (1) which key 

feature(s) best reflect their mobility characteristics, (2) how 

do those key features differ for different tasks, and (3) what 

is the optimal sensor placement to capture the key mobility 

features examined? Based on these questions, it would be 

preferable to examine home mobility using a „top-down‟ 

approach, using enough sensors to recreate whole-body 

movement. This data allows for the potential identification 

of any key mobility features that can separate motor 

performance based on age, or compare the mobility of 

healthy aging individuals against that of persons with motor 

disorders. Once those key features are identified, sets of 

markers (i.e., minimal number of sensors, optimally placed) 

could then be applied to best represent the mobility 

behaviors of subjects. This is different from the „bottom-up‟ 

approach used in previous studies where the minimal 

number of sensors is used based on educated guesses. 

Accordingly, there is a need for a system that can capture 

whole-body mobility in the home.  

To date, whole-body mobility has been constrained to the 

laboratory where several systems exist to capture 3D human 

motion. They include magnetic, sonic and optical systems 
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using passive or active markers. While each of these systems 

provides fairly accurate 3D representation of human 

movement, they are not suited for home recording. Over the 

last 10 years, inertial sensing has proven to be a suitable 

ambulatory alternative to traditional image-based tracking 

systems [20]. Inertial sensing for motion tracking is most 

commonly performed using nine-axis sensor modules or so 

called Inertial Measurement Units (IMUs), each containing 

three orthogonally mounted triads of angular rate sensors, 

accelerometers, and magnetometers. The accelerometers are 

used to measure the linear acceleration vectors that are 

relative to the coordinate frame of the sensor module. The 

magnetometers serve a similar function for the local 

magnetic field vector. Angular orientation is determined by 

integrating the output from the angular rate sensors. Using a 

combination or fusion of this triad of sensor signals and 

various signal processing techniques, it is possible to 

estimate the orientation of the module. The accuracy of this 

estimation varies with the type of sensor used, the motion 

being tracked, the environmental presence of ferrous objects 

and the performance of the fusion algorithm used. IMUs are 

used in aerospace, marine and automotive fields and are now 

increasingly used for human motion tracking in clinical 

applications.  

Inertial sensor nodes are generally limited in their number 

and location, but recently several off-the-shelf portable full 

body recording systems have been introduced, such as the 

MVN® from Xsens Technologies, IGS-190 from Animazoo, 

and FAB from Biosyn™. These systems contain 16 to 19 

inertial motion sensors. While there is potential to use such 

systems for measuring body motion in humans [23-27], they 

are by no means perfect. In fact, they are understandably less 

accurate than camera-based systems [21, 22], because of 

drift, potential loss of data due to poor transmission, etc.  

Nonetheless, they currently represent the best method 

available for capturing whole-body mobility in the home.   

The objective of this study was to quantify the 

variability/repeatability of movement profile components 

during daily tasks among elderly patients with PD. This 

study considered 11 PD patients who needed medication 

adjustments. The participants‟ mobility was studied both 

pre-, and post-medication alteration. However, the results 

that are presented in this paper mainly reflect comparisons in 

pre-medication differences in order to focus on short-term 

variability in aspects of mobility. 

Among various tools that can be used for quantitative 

assessment of mobility, Principal Component Analysis 

(PCA) has been chosen to reveal the internal structure of 

each routine task performed by individual participants.  

 

 

 

II. METHODS 

A. Patients 

The inclusion criterion for study participants was that they 

had to be ambulatory patients with PD experiencing mild to 

moderate medication inefficacy, demonstrating wearing off 

of drug, or dyskinesia. These patients were included because 

they lead a range of active daily lifestyles representative of 

the range of PD patients seen at the Movement Disorders 

Centre clinic. The patient demographic for the study was as 

follows: 11 patients, 8 males, 3 females, ages ranging from 

56-78 years, weight ranging from 57-107kg, 2 drug-naïve, 2 

requiring walking aid, 8 leading fairly active lifestyles. 

 

B. Experimental Procedure 

In-home mobility was recorded using an IMU  based 

motion analysis system. These visits lasted 1.5 hours each. 

During this session, the participants were equipped with 11 

inertial motion units (IMUs) of the FAB system (Functional 

Assessment of Biomechanics ™, Biosyn Systems, Inc.) on 

their upper and lower limbs, trunk, pelvis, and head (Fig. 1). 

Data recorded from the sensors were wirelessly transmitted 

to a signal receiver and laptop computer placed within the 

environment. The system was calibrated for 15s with the 

participant stationary in neutral position (standing upright, 

head facing forward, feet shoulder width apart, arms by 

sides, palms inward).  

Before the experiment, participant height and weight were 

entered into the FAB software to calibrate a personalized 

biomechanical model of the sensor system placed across 

standard body locations (Fig. 1). In the first part of the 

experiment, participants performed nine scripted tasks, 

consisting of specific movements such as walking and 

turning, sitting and rising from a chair, figure 8 turns, and 

reaching tasks (TABLE II). Participants unable to complete 

certain tasks were asked to complete only those with which 

they felt comfortable. At the end of each recording, time 

series related to orientation of the 11 sensors were translated 

to joint angles and joint angular velocities using the 

biomechanical model by the FAB software.  

In the second part of the experiment, the system was 

recalibrated and participants were instructed to go about 

their routine household activities while wearing the FAB 

system. They were also instructed to remain indoors within 

40m of the signal receiver to allow for optimum signal 

reception. Free motion capture occurred for one hour. Also, 

a miniature video camera clipped to the shirt collar was used 

to identify the environment in which the individual was 

moving. Researchers involved with data collection left the 

premises for the duration of the hour to avoid experimenter 

bias. 
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Fig. 1.  Placement of 11 sensors on the body limbs, trunk, pelvis, and head 

(image taken from FAB Recorder software, Biosyn Systems). Head sensor 

is fixed to a cap worn by the participant. The remaining 10 sensors are held 
in place by Velcro straps.  

C. Data Analysis 

Movement of body limbs was recorded at a sampling rate 

of 100 Hz. Three dimensional accelerations and angular 

velocities from 11 IMUs were converted to body joint angles 

and joint angular velocities (Fig. 2 (b) and (c)) using the 

individualized biomechanical model generated for each 

participant. For analysis, fifty-nine joint variables provided 

by FAB software included 10 angular velocities and 48 joint 

angles (TABLE I). Of these, pelvic heading velocity relative 

to Earth‟s magnetic North was extracted based on the initial 

calibration.  

Time segments of each task and trial were manually 

extracted for analysis by watching the avatar animation 

time-synchronized with the recorded data.  

All joint variables were averaged over 0.5sec bins to 

capture gross volitional movements less than 2Hz. PCA 

analysis with the covariance method was applied to the 

normalized and binned data for each task. Since PCA is 

amplitude-sensitive, both velocities and angles were 

separately normalized to the greatest data point in either 

group, to make the two groups equally important. The 

covariance matrix was calculated in MATLAB
®
 (R2007b), 

based on which the scores were ranked by importance. The 

PCA scores were used to evaluate the relative contribution 

of individual joint variables to each specific task. A joint 

variable with higher PCA score had greater contribution to 

the variance in the data. It was assumed that similar PCA 

profiles across trials/tasks/participants would indicate 

reliability among repeated samples. 

Inter-trial variability was assessed for both scripted and 

non-scripted walking (T1) at baseline. Inter-subject 

variability was assessed for scripted walking. Inter-task 

variability was assessed using the nine scripted tasks 

(TABLE II). 

 
 

 
 

Fig. 2.  Participant #11 sample of scripted movement involving 9 tasks (T1-
T9, TABLE II). All 59 joint variables were averaged over 0.5 sec bins and 

normalized to either maximum velocity or maximum angle, (a). Left-right 

knee velocities as samples of time-domain joint angular velocities, (b). 
Right elbow flexion, pelvis heading, and trunk flexion as samples of time-

domain joint angles, (c).  

III. RESULTS 

PCA analysis compared across trials for the walking task 

indicated large inter-trial variability (Fig. 3). This was the 

case for 10 of 11 participants. 

 

 
Fig. 3.  Typical inter-trial variability demonstrated in scripted walking task 
for participant #9, prior to medication adjustment. Warmer colors indicate 

higher PCA scores which represent greater contribution to the variance in 

the data.  
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We also report variability between scripted and non-

scripted tasks for walking in baseline condition (Fig. 4). 

 

 
 

Fig. 4.  Even for the participant who demonstrated low inter-trial variability 
for the scripted walking task (a), inter-trial variability increased for the non-

scripted walking task (b). Warmer colors indicate higher PCA scores which 

represent greater contribution to the variance in the data. 

 
 

Fig. 5.  Inter-subject variability for scripted walking task presented by PCA 

scores. Warmer colors indicate higher PCA scores which represent greater 
contribution to the variance in the data. Data presented for 11 participants, 

three trials of walking each, at baseline (pre-medication intervention).  
 

Inter-subject variability for the scripted walking task is also 

reported (Fig. 5). Inter-task variability is reported across all 

participants in nine scripted tasks (Fig. 6).   

 
Fig. 6.  Typical inter-task variability demonstrated across 9 scripted tasks 

for Patient#12. Warmer colors indicate higher PCA scores which represent 
greater contribution to the variance in the data. 

IV. CONCLUSION 

While recording from just one or two sensors has proven 

useful in quantifying certain aspects of mobility for healthy 

elderly populations, our preliminary results suggest that 

reducing the number of sensors may lead to loss of 

potentially relevant information, at least for a PD population. 

Perhaps the profile of movements in PD patients is more 

confounded by hypo and hyper kinetic motions across the 

limbs compared to those in healthy individuals. It can be 

suggested that in the capture of mobility through natural 

movements, certain variables associated with disease may be 

lost if assessed with reduced number of sensors, particularly 

movements present within the home environment in a 

population with Parkinson disease. 

 The data were analyzed to determine possible variability 

between tasks, between subjects, and between trials. PCA 

assumes that a linear relationship exists among the variables. 

While this is by no means demonstrated for the variables 

used here, PCA provides a reasonable first attempt at 

identifying movement patterns. 

While it is expected that the PCA profile of joint activities 

varies between tasks, as shown in Fig. 6,  a conserved 

movement profile amongst patients for each separate task 

was looked for, but was not found. In comparison to 

standardized movement patterns typical of laboratory 

settings, monitoring of natural movements requires more 

sensors to capture those combined limb activities more 

relevant to everyday life. To examine scripted and non-

scripted tasks further, walking was highlighted as the most 

repeated and distinct movement facilitating this comparison. 

Even for the patient showing the least inter-task variability 

for scripted tasks, non-scripted walking demonstrated higher 

variability (Fig. 4).  

In addition, the inter-subject variability seen across 

participants within the same non-scripted task demonstrates 

inconsistency expected among patients with PD. Parkinson 

disease is a condition with a large degree of heterogeneity in 
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phenotypic presentation. Such variability suggests that 

sensor reduction should be sparingly and conservatively 

employed in this population, for personalized mobility 

assessment. 

As demonstrated by the inconsistency of variables 

identified by PCA, patient movement profiles were not 

replicated across multiple trials within the same scripted task 

(Fig. 3,4). This shows that there is, in fact, a wide range of 

movement patterns adopted by patients with PD, which 

might not be captured in recordings from only one or two 

sensors. These differences in movement patterns may reveal 

important aspects of mobility changes. Common features of 

the movement patterns may also emerge as more patients are 

tested. Further studies in this area may provide great benefit 

to rehabilitation assessment and intervention.  

APPENDIX  

TABLE I 

JOINT MEASUREMENT VARIABLES USED IN THE STUDY 

Variable # Quantity  

 

1 
Angular Velocity (deg/sec) 

Cervical  

 

2 Trunk   

3-4 Left- Right Shoulder   

5-6 Left- Right Elbow   
7-8 Left- Right Hip   

9-10 Left- Right Knee  

 

 

 Joint Angle (deg)  

11-12 

13-14 
15-16 

17-18 

19-20 
21-22 

23-28 

 
29-34 

 

35-37 
38-40 

41-46 

 
47-52 

 

53-55 
 

56-58 

Cervical (Flexion, Extension) 

Cervical Lateral Flexion (Left, Right) 
Cervical Rotation (Left, Right) 

Trunk (Flexion, Extension) 

Trunk Lateral Flexion  (Left, Right) 
Trunk Rotation  (Left, Right) 

Left Shoulder  (Flexion, Extension, Abduction, 

Adduction, Internal Rotation, External Rotation) 
Right Shoulder  (Flexion, Extension, Abduction, 

Adduction, Internal Rotation, External Rotation) 

Left Elbow (Flexion, Supination, Pronation) 
Right Elbow (Flexion, Supination, Pronation) 

Left Hip  (Flexion, Extension, Abduction, 

Adduction, Internal Rotation, External Rotation) 
Right Hip  (Flexion, Extension, Abduction, 

Adduction, Internal Rotation, External Rotation) 

Left Knee (Flexion, Internal Tibial Rotation, 
External Tibial Rotation) 

Right Knee (Flexion, Internal Tibial Rotation, 

External Tibial Rotation) 

 

59 Pelvis Incremental Rotation  

 

TABLE II 

DESCRIPTION OF THE SCRIPTED TASKS 

Task Description  

T1 
 

T2 
 

 

T3 
 

T4 

 
T5 

Walking in a straight line at a normal speed. 
Performed over 5m 

Walking in a straight line at a fast speed 
Performed over 5m 

 

90° Rotation on one spot, both sides 

  
180° Rotation on one spot, both sides 

 

Walking at a normal speed and turning around 

 

 

 

T6 

  

two spots (Figure-8 shape), performed over 

5m with pivot points at 1.5 and 3m  

Rising out from a standard chair without 

supporting armrests  

T7 Rising out from a standard chair without 
supporting armrests and walking forwards 

 

 

T8 

 

Reaching in front and on both sides for object 
held just beyond reach at chest height  

 

T9 Bending down in front and on both sides for 

reaching an object held beyond reach on the 
ground 

 

   

 

All the tasks were repeated three times. 
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