
  

  

Abstract—Clinical assessment scales to evaluate motor 

abilities in stroke survivors could be used to individualize 

rehabilitation interventions thus maximizing motor gains. 

Unfortunately, these scales are not widely utilized in clinical 

practice because their administration is excessively time-

consuming. Wearable sensors could be relied upon to address 

this issue. Sensor data could be unobtrusively gathered during 

the performance of motor tasks. Features extracted from the 

sensor data could provide the input to models designed to 

estimate the severity of motor impairments and functional 

limitations. In previous work, we showed that wearable sensor 

data collected during the performance of items of the Wolf 

Motor Function Test (a clinical scale designed to assess 

functional capability) can be used to estimate scores derived 

using the Functional Ability Scale, a clinical scale focused on 

quality of movement. The purpose of the study herein 

presented was to investigate whether the same dataset could be 

used to estimate clinical scores derived using the Fugl-Meyer 

Assessment scale (a clinical scale designed to assess motor 

impairments). Our results showed that Fugl-Meyer Assessment 

Test scores can be estimated by feeding a Random Forest with 

features derived from wearable sensor data recorded during 

the performance of as few as a single item of the Wolf Motor 

Function Test. Estimates achieved using the proposed method 

were marked by a root mean squared error as low as 4.7 points 

of the Fugl-Meyer Assessment Test scale. 

 

I. INTRODUCTION 

ACH year about 800,000 people suffer a stroke in the 

United States alone [1]. Stroke survivors are affected by 

impairments and limitations of cognitive, language, 

perceptual, sensory, and motor functions [2]. Rehabilitation 

interventions are designed to address these impairments and 

functional limitation. The design of individual rehabilitation 
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programs that target subject-specific motor impairments and 

functional limitations is of paramount importance to 

optimize the outcomes of rehabilitation on a subject-by-

subject basis. Several clinical assessment scales have been 

developed to capture motor impairments and functional 

limitations in stroke survivors. These scales are based on the 

observation of a subjects’ motor behavior. In the following, 

we focus on a few of these scales that have been broadly 

used in stroke rehabilitation. The Wolf Motor Function Test 

(WMFT) is a clinical scale designed to assess subjects’ 

functional ability. The Functional Ability Scale (FAS) is a 

clinical scale that captures quality of movement. This scale 

is based on the observation of a subjects’ motor behavior 

while they perform motor tasks that are part of the WMFT. 

The Fugl-Meyer Assessment (FMA) scale is a clinical scale 

designed to evaluate motor impairments [3]. Unfortunately, 

the administration of these scales is time-consuming. Given 

the limited time available for rehabilitation interventions in 

stroke survivors, therapists often favor increasing the time 

devoted to therapy at the cost of not performing longitudinal 

assessments of motor abilities. 

Wearable sensors could be used to address this 

problem [4, 5, 6]. Previous studies by our team showed that 

wearable sensor data can be used to estimate clinical scores 

of movement ability [7, 8]. Specifically, we collected 

accelerometer data during the performance of a set of motor 

tasks selected among the WMFT items, we segmented the 

data and estimated data features that captured important 

characteristics of movement patterns observed in stroke 

survivors (e.g. jerkiness of movement), and we estimated the 

total FAS score or each subject undergoing assessment [8]. 

Results showed that it is possible to achieve estimates of the 

total FAS score from the analysis of wearable sensor data 

with a bias of only 0.15 points and a standard deviation of 

only 2.36 points of the FAS scale. 

The purpose of the study herein summarized was to assess 

if the methodology we previously developed to estimate 

FAS scores [8] could be extended to the estimation of FMA 

clinical scores. In other words, we tested the hypothesis that 

wearable sensor data collected during the performance of 

motor tasks that are part of the WMFT are suitable to 

estimate FMA scores. 

II. METHODS 

A. Clinical Assessment 

Twenty-four stroke survivors participated in the study. All 

experimental procedures were performed according to a 

protocol approved by the Spaulding Rehabilitation Hospital 
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Internal Review Board. Each subject underwent the WMFT 

and was evaluated by a clinician using standardized clinical 

motor performance scales, including the FAS and the FMA. 

The WMFT consists of 15 timed and 2 strength tasks. The 

strength tasks are scored independently from the rest of the 

scale. The 15 timed tasks are arranged in order of 

complexity. They progress from proximal (shoulder) to 

distal joints (hand). They test the ability of performing 

specific movements (e.g. pinch grip) and the speed of 

performance of such movements [9, 10]. Quality of 

movement during the performance of the 15 timed motor 

tasks of the WMFT is assessed by using the FAS. The FAS 

is a 75-point scale. The FMA is a test based on 155 items 

designed to assess motor impairments. This clinical scale 

focuses on multi-joint movements and synergy patterns [11]. 

Patients are asked to perform movements that are considered 

to reflect the sequential stages of flexion-extension 

synergies, and the ability to perform selective 

movements [12]. The FMA uses a three-point ordinal scale: 

0 indicates that the item was not performed, 1 indicates that 

the item was performed partially, and 2 indicates that the 

item was performed completely. In this study, we considered 

the upper extremity section of the FMA, which consists of 

33 items. The maximum score achievable for this section of 

the FMA is 66. Both the FAS and the FMA are organized in 

sections that focus on specific joints. Table I shows a 

summary of the main sections of these two scales. 
 

TABLE I 

DECSRIPTION OF THE SECTIONS OF THE FUNCTIONAL ABILITY 

SCALE (FAS) AND THE FUGL-MEYER CLINICAL (FMA) SCORES 
 

Score Sections Tasks-Items Range

Total FAS 1-6, 8-13, 15-17 0-75

Arm FAS 1-6, 8, 17 0-40

Hand FAS 9-13, 15-16 0-35

Total FMA 1-33 0-66

Shoulder-Elbow FMA 3-17 0-30

Wrist-hand FMA 19-30 0-24

Wrist FMA 19-23 0-10

Hand FMA 24-30 0-14
 

 

B. Data Collection 

Subjects were clinically evaluated for all 15 motor tasks of 

the WMFT. Sensor data was collected for a subset of eight 

tasks, which we dived into two sets of items. Items in the 

first set were referred to as Reaching Tasks and consisted of 

item 1 (forearm to table-side), item 4 (extend elbow-weight), 

item 5 (hand to table), and item 8 (reach and retrieve). Items 

in the second set were referred to as Manipulation Tasks and 

consisted of item 9 (lift can), item 10 (lift pencil), item 13 

(flip cards) and item 15 (turn key in lock). 

Data collection was performed using six accelerometers 

placed on the affected arm and the trunk. Accelerometers on 

the hand, forearm, and upper arm were biaxial whereas 

accelerometers on the index finger, thumb, and sternum 

were uniaxial (Figure 1). The sensor data was recorded using 

the Vitaport 3 (Temec BV, The Netherlands) ambulatory 

recorder but the use of accelerometers is compatible with a 

wearable sensor implementation of the system, which is our 

target goal. Therefore, the study should be considered a test 

of feasibility of an application of wearable sensors. Subjects 

performed multiple repetitions of each tasks. 
 

 
 

Fig. 1. Scheme of sensors positioning and axes orientation. 

 

C. Data Analysis 

FMA scores could be estimated either by 1) first 

estimating FAS scores via the analysis of wearable sensor 

data and then relying on the correlation between FAS scores 

and FMA scores to estimate the FMA scores or by 

2) developing an algorithm that estimates the FMA scores 

directly from wearable sensor data. In all the analyses 

reported below, we focused on estimating the FMA total 

score. 

To compare the above-mentioned approaches, we first 

assessed the correlation between the FAS total score as well 

as the scores for sections of the FAS and the FAM total 

score. Then, we estimated the linear regression line relating 

sections of the FAS and the FAM total score to estimate the 

FAM total score given an FAS score. We derived FAM total 

score estimates and characterized them by means of deriving 

the root mean squared (RMS) error value of the estimated 

FAM total scores given that actual scores were known. We 

set the RMS error values achieved via the method described 

above as values we had to improve upon to make it worth 

estimating the FMA scores directly from wearable sensor 

data. Next, we analyzed the accelerometer data using the 

method described below, which was designed as an 

extension of previous algorithms we developed to estimate 

FAS scores based on the analysis of wearable sensor 

data [8]. 

Data Processing, Segmentation and Feature Extraction 

Accelerometer time series were low-pass filtered with a 

cut-off frequency of 15 Hz to remove high frequency noise, 

and then high-pass filtered with a cut-off frequency of 1 Hz 

to isolate the acceleration components due to postural 
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adjustments. Both the low-pass and high-pass filtered 

versions of the data were utilized in the analysis. 

Data were segmented to isolate the different movement 

components that constitute each motor task performed as 

part of the selected items of the WMFT. The segmentation 

was performed using digital marks introduced during the 

data collection to identify the beginning and end of each 

repetition of a motor task. Manipulation tasks were also 

segmented within the task into reaching, manipulation and 

release movement components using a touch sensor. 

Subjects performed between 5 and 20 repetitions of each 

task according to the nature of the motor task. Table II lists 

the features extracted from the accelerometer data to capture 

aspects of movement of interest such as speed, smoothness 

and coordination. 
 

TABLE II 

LIST OF THE FEATURES EXTRACTED FROM THE 

ACCELEROMETER DATA. 

 

Feature extracted

Mean value

Root-Mean-Square value 

Dominant frequency  

Ratio of energy in 0.2 Hz bin around the  dominant frequency to total energy

Range of autocovariance

Root-Mean-Square value of the jerk time series (derivative of  acceleration)  

Dominant frequency of the jerk time series  

Ratio of energy in 0.2 Hz bin around the dominant frequency of jerk to total energy 

Peak velocity  

Jerk metric (the RMS jerk normalized by  the peak velocity)

Approximate entropy 

Correlation between pairs  of accelerometer time series  

Peak correlation within a 1 s window between pairs of accelerometer time series  

Lag time of the peak correlation between pairs of accelerometer time series  

 
 

Feature selection 

The features from each task were imported into the 

Waikato Environment for Knowledge Analysis (WEKA) for 

exploratory analysis. The top 10, 20, 30, 40 and 50 features 

from each of the 8 tasks were selected by the ReliefF feature 

selection algorithm, which ranks the attributes according to 

their importance, that is to say according to their ability to 

maximize the separation among classes associated with 

different clinical scores. For our analysis the WEKA 

implementation of the algorithm was used, the number of 

nearest neighbors K was set to 10 [11].  

Clinical Scores Prediction  

To derive estimates of the FMA total scores, we chose to 

use a regression implementation of the Random Forest 

method [14]. Random Forests consist of a set of decision 

trees that are generated via an iterative procedure that is 

based on the use of a randomized/bagged selection of 

features at each split, which are replaced at each iteration of 

the algorithm [14]. We set the number of trees of the 

Random Forests to 100. Random Forests were trained and 

tested using a 10-fold cross-validation method [14]. 

III. RESULTS 

Correlation coefficients estimated by using different 

sections of the FAS and the FMA total score ranged between 

0.66 and 0.85. The highest value was found for the 

correlation between the FAS total score and the FMA total 

score. The lowest value was found for the correlation 

between the hand section of the FAS and the FMA total 

score. When estimates were then derived using the 

regression line relating scores for the FAS scale (total and 

sections of the scale) and the FMA total score, we observed 

RMS errors equal to 6.66, 7.25, and 7.83 points of the FMA 

scale when we used the FAS total score, the FAS arm 

section and the FAS hand section, respectively. It is worth 

emphasizing that these RMS error values exceed 10% of the 

FMA upper extremity score range (0-66 points) and is 

relatively large considering the range observed in patients 

participating in the study (22-66 points). It is also worth 

emphasizing that the regression between the FAS scores 

derived for each WMFT item and the FMA total scores has 

no meaning due to the limited range spanned by FAS scores 

for a single WMFT item (0-5) compared with the 66 points 

of the upper extremity FMA total score. 
 

 
 

Fig. 2. Effect of different number of features and choice of WMFT item on 

the RMS error marking the FMA total score estimates. 

 

Results derived by estimating FMA total scores using 

wearable sensor data are summarized in Figure 2. The plot 

shows the RMS error values marking the FMA total score 

estimates derived from the selected 8 items of the WMFT. 

Results are provided for different numbers of selected 

features ranging from 10 to 50. Differences in RMS error 

values marking the FMA total score estimates were found to 

be lower for certain item of the WMFT (e.g. items 1, 9, and 

13) than others (e.g. items 4 and 8). A significant decrease in 

RMS error values can be observed when using 20 features 

compared to using 10 features. Changes in RMS error values 

when using a larger number of features (30 to 50) appear to 

be marginal. 
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Table III shows the RMS error values marking the FMA 

total score estimates derived using wearable sensor data 

from each of the 8 selected items of the WMFT. The best 

results were achieved using wearable sensor data collected 

during the performance of items 1, 9, and 13 of the WMFT. 

 
TABLE III 

RMS ERRORS MARKING THE FMA TOTAL SCORE ESTIMATES DERIVED 

FROM THE EIGHT SELECTED WMFT ITEMS, USING 20 WEARABLE SENSOR 

DATA FEATURES. 

 

Task 
RMSE Total FMA (0-66) 

20 features 

WMFT item #1 6.46 

WMFT item #4 9.58 

WMFT item #5 6.63 

WMFT item #8 9.61 

WMFT item #9 4.21 

WMFT item #10 7.78 

WMFT item #13 6.55 

WMFT item #15 7.24 

 

IV. DISCUSSION AND CONCLUSION 

The results of our study indicate that estimates of the 

FMA total score can be derived by analyzing wearable 

sensor data collected during the performance of items and 

the WMFT. The RMS error of the FMA total score estimates 

that we derived was as low as 4.74 points of the FMA scale. 

This value is significantly lower than the RMS error value 

obtained when one relies upon deriving clinical estimates of 

the FAS score and estimating the FMA total score based on 

the correlation between the FMA total score and the FAS 

total score. In fact, in this latter case, the RMS error value 

marking the FMA total score estimates that we derived in 

the study was 6.99 points of the FMA scale. 

It is worth emphasizing that the RMS error values that we 

derive to characterize estimates of the FMA total scores 

derived using wearable sensor data relate to the use of a 

single item of the WMFT. It is interesting to notice that 

item #9 of the WMFT was the one, among the 8 items 

selected for this study, that led to the lowest value of RMS 

error marking the FMA total score estimates. Item #9 of the 

WMFT is “lifting a can”. These tasks require the 

performance of multiple movement components, namely 

reaching, manipulation and retrieve. This observation points 

to the need for analyzing complex movements to capture 

multiple aspects of the movement characteristics in stroke 

survivors that are associated with their level of impairment 

as captured using the FMA scale. 

In the future, the methodology herein presented could 

become part of routine clinical assessments used to monitor 

patients’ response rehabilitation interventions. However, 

several aspects of the proposed methodology require further 

study before a deployment of this technology in a clinical 

context can be pursued. First, analyses should be performed 

to estimate FMA scores for sections of the scale so as to gain 

a better understanding of the relationships between patients’ 

movement characteristics and specific sections of the FMA 

scale. These analyses could lead to significant modifications 

of the algorithms. For instance, they could indicate the need 

for using wearable sensor data to estimate sections of the 

FMA scale and then derive the FMA total score from the 

estimates of the scores for selected sections of the FMA 

scale. Another approach that could emerge from such 

analyses is one that relates sections of the FMA scale to 

features derived from wearable sensor data collected during 

performance of specific movement components such as 

reaching, manipulation and release as opposed to collected 

during performance of a given item of the WMFT. Finally, a 

study in a larger cohort of stroke survivors should be 

performed before pursuing clinical assessment of the 

proposed method. 
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