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Abstract— The problem of detecting T-wave alternans (TWA) in
ECG signals has received considerable attention in the biomedical

community. This paper introduces a Bayesian model for the T waves
contained in ECG signals. A block Gibbs sampler was recently studied
to estimate the parameters of this Bayesian model (including wave
locations, amplitudes and shapes). This paper shows that the samples

generated by this Gibbs sampler can be used efficiently for TWA
detection via different statistical tests constructed from odd and even
T-wave amplitude samples. The proposed algorithm is evaluated on

real ECG signals subjected to synthetic TWA and compared with two
classical algorithms.

Index Terms— T-wave alternans, Bayesian analysis, Gibbs sampler.

I. INTRODUCTION

T-wave alternans (TWA) is a phenomenon appearing in elec-

trocardiograms (ECGs) as an index of malignant arrhythmias and

sudden cardiac death [1]. TWA is defined as a consistent fluctuation

in the repolarization morphology which repeats on an every-other-

beat basis. Since the first report of non-visible (microvolt-level)

TWA by Adam et al. in the 1980s, intensive research has been

conducted on developing TWA detection and estimation algorithms.

A complete and comprehensive review of signal processing methods

to detect and estimate TWA proposed before 2005 can be found

in [2]. More recently alternative techniques include the multilead

TWA detection by using principal component analysis [3] and an

empirical-mode decomposition based method [4]. The fact that

TWA amplitude is in the range of microvolts, together with the

presence of the baseline and the physiological noise in the ECG

make the TWA detection a difficult task. The main drawback of

existing TWA analysis approaches is either their sensitivity to

the presence of nonalternant components with high amplitude or

their poor sensitivity to low-level TWA. Another problem with

existing methods is that they generally require preprocessing steps

for baseline suppression, rough segmentation or alignment of ST-T

complexes. Thus, their performance is strongly influenced by the

quality of these preprocessing procedures.

A Bayesian model was recently introduced in [5] for P- and T-

wave delineation. This model takes into account prior distributions

for the unknown parameters (wave locations and amplitudes as

well as waveform and local baseline coefficients). These prior

distributions are combined with the likelihood of the observed data

to define the posterior distribution of the unknown parameters.

Simulation methods have then shown interesting properties to

alleviate the complexity of this posterior distribution. In particular, a

Gibbs sampler was proposed in [5] to generate samples distributed

according to the posterior and to estimate the model parameters

using these samples. The present paper introduces new TWA

detection methods based on the data generated by this Gibbs

sampler. More precisely, the previous proposed algorithm [5] is

slightly modified in order to perform T-wave delineation taking
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into account a distinction between odd and even beats. Then odd

and even T-wave amplitudes generated by the sampler can be used

to build statistical tests for TWA detection. This paper concentrates

on two tests: the two-sample Kolmogorov-Smirnov test (which is a

non-parametric and robust method for comparing two samples) and

the two-sample Student’s t-test which is based on the assumption

of normality for comparing the mean of two samples [6]. Note that

contrary to the statistical test proposed in [7], the proposed method

computes multiple test statistics for each observation window (one

per iteration of the Gibbs sampler) that can be used advantageously

to derive detection performance (detection probability, probability

of false alarm, receiver operational characteristics, etc.). Compared

with a test based on a single estimation, the proposed method

provides information about the reliability of the detection which

is important for medical diagnostics.

The paper is organized as follows. Section II summarizes the

model used for the T waves contained in the ECG signal. Section

III summarizes the prior and posterior distributions of the unknown

model parameters studied in [5]. TWA detection strategies based

on the estimation of the odd and even T-wave amplitudes are

then presented in Section IV. Simulation results performed on

simulated TWA affecting real ECG signals and a comparison with

two standard TWA detection algorithms are presented in Section V.

II. SIGNAL MODEL

Most TWA detection methods are based on consecutive extracted

and aligned T waves. Each T wave is usually selected with a fixed

or RR-adjusted time window and aligned by using an appropriate

technique. However, as explained in [8], TWA analysis is affected

by the performance of the alignment techniques since T-wave

delineator used for TWA analysis must show inter-beat stability

in the fiducial point determination. In this paper, we propose a

new signal model for the extracted T waves that allow alignment

errors to be compensated. In the proposed method, we first detect

QRS-complexes that are the most prominent parts of the ECG

signal, and we shift a nonoverlapping 2D-beat processing window

to cover the whole signal. In the processing window, the right hand

neighborhood of each successive pair of QRS-offset constitutes

a T-wave search interval (shown in Fig. 1(a)). The length of the

nth T-wave search interval NT,n can be fixed either according to

the cardiologists or simply as a fixed percentage of Nn, which

is the length of a non-QRS interval (n ∈ {1, . . . , 2D}). The T-

wave search intervals are divided into odd T-wave blocks denoted

as Jo = {Jo,1, · · · Jo,D} (containing the D odd T-wave search in-

tervals) and even T-wave blocks denoted as Je = {Je,1, · · · Je,D}
(containing the even intervals).

As shown in Fig. 1(b), signals within each T-wave search interval

can be approximated by one main pulse representing the T wave

plus a local baseline. The odd (resp. even) waveforms are assumed

to be constant within each processing window, contrary to the

amplitudes and locations which vary with n. Therefore, T waves

within D odd search intervals can be modeled by the convolution

of an unknown waveform ho = (ho,0 · · ·ho,L)T (of length L) with

an unknown “impulse” sequence uo = (uo,1 · · ·uo,M )T indicating
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Fig. 1. (a) T-wave search intervals within the 2D-beat processing window.
(b) T waves within each non-QRS region. (c) T-wave amplitudes. Here we
set NT,n = Nn/2.

the odd T-wave locations and amplitudes (see Fig. 1(c)). The

impulse sequences can be defined as the products uo,k = bo,kao,k

of binary indicator sequences bo,k ∈ {0, 1} and amplitude factors

ao,k ∈ R. Each bo,k = 1 indicates the location of an odd T wave,

and the corresponding ao,k is the respective amplitude. Note that

the ao,k are undefined for all k where bo,k = 0. Similarly, the

even T waves within a window are modeled by the convolution

of he = (he,0 · · ·he,L)T with ue = (ue,1 · · ·ue,M )T . Let K
denote the corresponding signal length. The ECG signal within the

processing window can then be written as

xk =
L
∑

l=0

ho,l (ao,k−lbo,k−l)+
L
∑

l=0

he,l (ae,k−lbe,k−l)+ck+wk (1)

where ck defines the baseline and wk is the additive white Gaus-

sian noise with unknown variance σ2
w. Note that only indexes k

belonging to a T-wave search interval are considered in this paper.

Baseline removal is generally recognized as an important pro-

cessing step which makes the estimation of local baseline essential

for TWA detection. Here, we propose to model the local baseline

within the nth interval Jn by using a 4th-degree polynomial, i.e.,

cn,k =
5
∑

i=1

γn,ik
i−1, k = 1, . . . , Nn , (2)

for each n∈{1, . . . , 2D}. In vector-matrix form, (2) can be written

as cn = M nγn, where M n is a known Nn× 5 Vandermonde

matrix and γn = (γn,1 · · · γn,5)
T contains the unknown baseline

coefficients. The baseline sequence for the entire 2D-beat window

can then be written as c = (c1, . . . , c2D) = Mγ where M is a

K × 10D matrix and γ is a 10D × 1 vector.

Let bo, be, ao, and ae denote the M × 1 vectors corresponding

to bo,k, be,k, ao,k, and ae,k, and Bo , diag(bo), Be , diag(be)
denote the diagonal M×M matrices whose diagonal elements are

formed by the components of bo and be. By concatenating (1) for

k = 1, . . . , K, where K is the number of ECG signal samples, the

following matrix equation can be obtained

x = F oBoao + F eBeae + Mγ + w , (3)

where F o is the Toeplitz matrix of size K × M with first row

[ho,0 0M−1] and first column
[

(ho)
T

0M−1

]T

, while F e is the

Toeplitz matrix of size K × M with first row [he,0 0M−1] and

first column
[

(he)
T

0M−1

]T

(0M−1 is the (M − 1) × 1 vector

of zeros).

III. BAYESIAN MODEL

The unknown parameter vector resulting from the above

parametrization is θ = (θT
o θT

e θT
cw)T, where θo , (bT

o aT
o hT

o )T

and θe , (bT
e aT

e hT
e )T are related to the odd and even T waves,

and θcw , (γT σ2
w)T is related to the baseline and noise. Bayesian

detection/estimation relies on the posterior distribution p(θ|x) ∝
p(x|θ)p(θ) (here, ∝ means “proportional to”), where p(x|θ) is

the likelihood function and p(θ) is the prior distribution of θ.

Likelihood function. Using our model (3) and the fact that ω is

white Gaussian, the likelihood function is obtained as

p(x|θ) ∝
1

σK
w

exp

(

−
1

2σ2
w

‖x−FoBo ao −FeBe ae −Mγ‖2

)

,

where ‖x‖2 = xTx.

Prior distributions. Since there are no known relations between

(bo, ao), (be, ae), αo, αe, γ , and σ2
n, all these sets of parameters

are assumed to be a priori statistically independent. We will now

discuss the prior distributions of these parameters. Let bJo,n
, n ∈

{1, . . . , D} contain all entries of the odd T-wave indicator vector

bo that are indexed by the odd T-wave interval Jo,n. The indicators

are subject to a block constraint: within Jo,n, there is one T wave

(i.e., ‖bJo,n
‖ = 1) or none (i.e., ‖bJo,n

‖ = 0), the latter case being

very unlikely. Therefore, we define the prior of bJo,n
as

p(bJo,n
) =











p0 if ‖bJo,n
‖ = 0

p1 if ‖bJo,n
‖ = 1

0 otherwise,

(4)

where p1 = (1− p0)/No,n and p0 is chosen very small. The

indicators bJo,n
are supposed independent, and all remaining entries

of the total vector bo (i.e., entries outside the search intervals Jo)

are zero. Thus, the prior of bo is the product of the priors p(bJo,n
).

For the T-wave amplitudes ao,k corresponding to bo,k = 1
(recall that the ao,k are undefined otherwise), we choose a zero-

mean Gaussian prior, i.e., p(ao,k|bo,k = 1) = N (0, σ2
a). This

allows for both positive and negative amplitudes. Amplitudes at

different k are modeled as statistically independent. It follows that

uo,k =bo,kao,k is the kth element of a Bernoulli-Gaussian sequence

with block constraints. The priors of the even T-wave indicators

be,k and amplitudes ae,k are defined in a fully analogous way,

with the same fixed hyperparameters p0, p1, and σ2
a. Moreover,

the even T-wave variables are supposed to be independent of the

odd T-wave variables. The odd T-waveform vector is assigned a

zero-mean Gaussian prior, i.e., p(ho) = N (0, σ2
hIL+1), where

IL+1 denotes the identity matrix of size (L + 1) × (L + 1).

The same prior is chosen for the even T-wave coefficients, i.e.,

p(he) = N (0, σ2
hIL+1). The baseline coefficients γn,i are also

modeled as independent identically distributed zero-mean Gaussian,

i.e., p(γ) =N (0, σ2
γI5D). The reader is invited to consult [5] for

details about the hyperparameter priors.

Posterior distribution. The posterior of the parameter vector θ is

given by

p(θ|x) ∝ p(x|θ)p(θ) = p(x|θ)p(θo)p(θe)p(θcw) , (5)

with p(θcw) = p(γ)p(σ2
w), p(θo) = p(ao|bo)p(bo)p(ho) and

p(θe) = p(ae|be)p(be)p(he). Due to the complexity of this dis-

tribution, a block Gibbs sampler generating samples asymptotically

distributed according to p(θ|x) was studied in [5]. From these

samples, the discrete parameters bo and be can be detected by

means of the sample-based maximum a posteriori (MAP) detector

whereas the continuous parameters ao, ae, ho, he, γ , and σ2
w can
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be estimated by means of the sample-based minimum mean square

error estimator (see [5] for details).

IV. BAYESIAN TWA DETECTION

As explained in Section III, the T-wave locations and amplitudes

can be sampled according to their joint posterior within each T-wave

search interval. Taking advantage of the Gibbs sampling method,

different statistical tests can be carried out on the T-wave amplitudes

generated by the proposed sampler to detect TWA1. First, we

consider the two-sample Kolmogorov-Smirnov (KS) test which is

a classical nonparametric method for comparing two samples. Let

a
(i)
o =

(

a
(i)
o,1 , . . . , a

(i)
o,D

)T

and a
(i)
e =

(

a
(i)
e,1 , . . . , a

(i)
e,D

)T

denote

the odd and even T-wave amplitudes within the 2D-beat window

generated at the i-th iteration of the Gibbs sampler. The TWA

detection can be formulated as the following binary hypothesis test

H0 : Fo = Fe, H1 : Fo 6= Fe

where Fo and Fe are the cumulative distribution functions of the

odd and even T-wave amplitude samples. The KS test statistic is

defined as

s(i) = sup
x

∣

∣

∣
F̂ (i)

o (x) − F̂ (i)
e (x)

∣

∣

∣
(6)

where F̂
(i)
o and F̂

(i)
e are the empirical distribution functions of a

(i)
o

and a
(i)
e , respectively.

The two-sample Student’s t-test can also be applied to compare

the means of the two samples a
(i)
o and a

(i)
e . The TWA detection

can be then formulated as

H0 : µo = µe, H1 : µo 6= µe

where µo and µe are the means of the odd and even T-wave

amplitude samples. The t-test statistic can be computed as follows

t(i) =
a

(i)
o − a

(i)
e

S
(i)
eo

√

2
D

(7)

where a
(i)
o =

1

D

D
∑

j=1

a
(i)
o,j , a

(i)
e =

1

D

D
∑

j=1

a
(i)
e,j and

S(i)
eo =

√

√

√

√

1

2D − 2

(

D
∑

j=1

(

a
(i)
o,j − a

(i)
o

)2

+
D
∑

j=1

(

a
(i)
e,j − a

(i)
e

)2
)

By computing the test statistics (6) or (7) at each iteration of

the Gibbs sampler, we obtain Neff = Nr − Nbi (Nr is the number

of iterations after convergence and Nbi is the number of burn-in

iterations) samples of the test statistics corresponding to the same

2D-beat block and we can thus approximate the distribution of the

test statistic using these samples. The final test decision can be

made based on the percentage of the obtained statistics that reject

the null hypothesis (absence of TWA). An interesting property of

the proposed tests is that their reliability can be evaluated, e.g., by

computing the detection probability τ for any processing window

τ =
Number of test statistic samples rejecting hypothesis H0

Total number of test statistic samples

This reliability information about the decision can be useful for

medical diagnostics.

1Note that the first iterations belonging to the so-called burn-in period
are not considered for parameter estimation or for TWA detection.
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Fig. 2. (a) Segment of dataset “e0303” with synthetic TWA and “ma” noise
SNR=10 dB (black), estimated local baseline (blue), and estimated odd (red)
and even (green) T waves. (b) Odd T-wave estimation averages (black) and
the corresponding confidence intervals (blue) for the 16-beat window. (c)
Even T-wave estimation averages (black) and the corresponding confidence
intervals (blue) for the 16-beat window.

V. SIMULATION RESULTS

Biomedical signal processing techniques are usually evaluated on

standard databases, where the output of the technique is compared

to manual expert annotations. However, because TWA is often

non visible due to its low amplitude (sometimes below the noise

level), the lack of validation databases has been a major problem

for TWA analysis. Simulated alternans with real nonalternant ECG

recordings are widely used in the community [2]. In the following

simulations, 20 healthy ECG segments (with 128 beats) have been

selected from different databases. TWA episodes are simulated by

adding and subtracting alternatively (on a every-other-beat basis) a

Hanning window to the delineated T waves as in [4]. A small TWA

amplitude value of Valt=35µV has been chosen for the evaluation.

Two different physiological noise sources have been considered

to evaluate the two proposed TWA detectors under real noise

conditions: electrode motion (“em”) and muscular activity (“ma”).

Note that the “em” and “ma” noises have been extracted from the

MIT-BIH noise stress test database. As a preprocessing step, the

QRS complexes have been detected using the algorithm proposed

in [9]. Based on the detected QRS complex locations, T-wave search

intervals have been defined. The processing window length has been

set to 2D=16 beats, which is the smallest window length among

the methods mentioned in [2]. Note that having a good detection

performance with a small window length is beneficial for medical

diagnostics. The Gibbs sampler studied in [5] has been run for each

processing window with Nbi = 40 burn-in iterations and Neff = 100
iterations to compute the estimates.

Fig. 2 shows the estimation results for an ECG signal segment

from the European ST-T dataset “e0303” with synthetic TWA.

The “ma” noise has been added to the signal with SNR=10 dB.

Typical estimates for the baseline and odd/even T waves are

depicted in Fig. 2(a). Fig. 2(b) and (c) show the averages of T-wave

estimates resulting from 20 Monte Carlo runs and the corresponding

confidence intervals (error bars) for the odd and even beats within

the 16-beats window. As explained in Section IV, the KS test and

t-test statistics can be determined for each iteration of the Gibbs

sampler according to (6) and (7) providing Neff = 100 decisions

for each processing window. Fig. 3 shows representative situations

for three different processing windows. Fig. 3 (a) and (d) show the
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Fig. 3. The KS-test (top) and the t-test (bottom) decisions made for
three different 16-beat windows: (a) and (d) show the test decisions for
one window of dataset “e0303” with no synthetic TWA and “ma” noise
SNR=10dB; (b) and (e) show the test decisions for one window of dataset
“e0303” with synthetic 35 µv TWA and “ma” noise SNR=5dB; (c) and (f)
show the test decisions for one window of dataset “e0303” with synthetic
35 µv TWA and “ma” noise SNR=10dB.

KS test and t-test decisions for one window of dataset “e0303”

with no synthetic TWA and “ma” noise (SNR=10dB). As can

be seen, both tests have accepted the null hypothesis 100 times,

therefore the null hypothesis can be accepted with full certainty

(τ = 0) for this window. Fig. 3 (c) and (f) show the decisions

for one window of dataset “e0303” corrupted with synthetic 35 µv
TWA and “ma” noise (SNR=10dB). The null hypothesis can be

rejected with full certainty (τ = 1) since both tests have rejected

the null hypothesis 100 times. Fig. 3 (b) and (e) show results for

a more complicated case where one window of dataset “e0303”

is corrupted with synthetic 35 µv TWA and with a higher “ma”

noise level than in the previous case (SNR=5dB). For this window,

the null hypothesis can be rejected with detection probabilities of

τ = 0.93 and τ = 0.82 for the KS test and the t-test, respectively.

It can be seen that, depending on signal characteristics (presence

of physiological noise, baseline behavior ...), the null hypothesis

rejection rate can be exactly unity (Fig. 3 (c) and (f)) or just below

1 (Fig. 3 (b) and (e)). Note again that using several samples from the

Gibbs sampling iterations provides multiple test statistics allowing

decision with an interesting reliability information.

For a quantitative comparison, we have implemented two classi-

cal methods, the spectral method (SM) [10] and the statistical test

based on the maximum amplitude of the ST-T complex (ST) [7].

Fig. 4 shows the detection results achieved with real signals with

synthetic 35µV TWA corrupted by “ma” and “em” noises for the

Bayesian Gibbs sampler with KS test (BGS-KS) and t-test (BGS-

T), the SM and the ST method. Note that 20 Monte Carlo runs have

been carried out for each SNR value, where the noise realizations

have been changed from one simulation to another. The processing

window length has been set to 16 beats for all the methods. As can

be seen, Bayesian Gibbs sampler based tests yield better results

for both “ma” and “em” noise compared to ST and SM (e.g., an

improvement of 10dB is achieved for having PD = 1). The KS test

gives slightly better results than the t-test. Note however that the

proposed methods have higher computational costs especially when

using large processing windows (e.g., 128 beats). Thus their use is

generally recommended for small processing windows.

VI. CONCLUSIONS

This paper studied a TWA detection technique based on a

Gibbs sampler recently introduced in [5] for generating samples
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Fig. 4. Detection performance for real ECGs with synthetic 35µV TWA.
The proposed Bayesian Gibbs sampler with KS test (green square markers),
Bayesian Gibbs sampler with t-test (blue round markers), the ST method
(red diamond markers) and the SM (black triangle markers) are tested in
both “ma” (continuous lines) and “em” (dotted lines) noise conditions.

distributed according to the posterior of an appropriate Bayesian

model. Benefiting from the Gibbs sampling, we carried out two

different statistical tests for comparing the odd and even groups

of T-wave amplitude samples. Validation on real ECG signals

with synthetic TWA showed that the proposed method provides

reliable TWA detection and accurate TWA waveform estimation

for a wide variety of wave morphologies with different types

of noise. Moreover, the proposed method provided better result

than two reference methods, at the price of higher computational

complexity. An interesting property of the proposed strategy is that

additional information concerning the reliability of the detection

can be obtained. Current investigations include the characterization

of TWA waveforms (i.e., by computing the difference between the

odd and even T-wave estimations presented in Fig. 2(b) and (c)),

which is important to detect arrhythmic risk. Depending on the

TWA characteristics, other statistical tests could also be studied.
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