
 

 

 

  

Abstract— The eyes play a major role in our everyday 
activities. Eye movements are controlled by the oculomotor 
system, which enables us to stay focused on visual targets, 
switch visual attention, and compensate for external 
perturbations. This system’s response to isolated visual or 
vestibular stimuli has been studied for decades, but what seems 
to be more critical is to know how it would respond to a 
combination of these stimuli, because in most natural 
situations, multiple stimuli are present. It is now believed that 
sensory fusion does not affect the dynamics of oculomotor 
modalities, despite studies suggesting otherwise. However, these 
interactions have not been studied in mathematical detail due 
to the lack of proper analysis tools and poor stimulus 
conditions. Here we propose an automated tool to analyze 
oculomotor responses without a-priori classification of 
nystagmus segments, where visual and vestibular stimuli are 
uncorrelated. Our method simultaneously classifies and 
identifies the responses of a multi-input multi-mode system. We 
validated our method on simulations, estimating sensory delays, 
semicircular canal time constant, and dynamics in both slow 
and fast phases of the response. Using this method, we can now 
investigate the effect of sensory fusion on the dynamics of 
oculomotor subsystems. With the analysis power of our new 
method, clinical protocols can now be improved to test these 
subsystems more efficiently and objectively. 

I. INTRODUCTION 
The study of the oculomotor system began with the study 

of its functional subsystems: the VOR (Vestibulo-Ocular 
Reflex), the smooth pursuit and saccadic systems, etc. [1]. 
All of these subsystems are essential to our normal daily 
functions: VOR to compensate head perturbations, smooth 
pursuit to follow visual targets, saccadic system to switch 
between visual targets [2-5]. Deficits in these systems can 
have devastating effects on basic daily activities [6-7]. 
Earlier studies of this system broke it down into its 
components and studied them separately [1, 8-10]. This led 
to models that were able to predict how these modalities 
would behave in different situations [11-15]. Later, 
identification techniques helped explain, to some extent, 
observed symptoms in patients [16]. Eventually, clinical 
protocols were developed to test the functionality of the 
oculomotor subsystems in humans, usually using distinct 
tests for each subsystem [17]. However, in almost all natural 
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situations, these subsystems collaborate with each other. For 
example, when a person is driving, the VOR compensates 
for head perturbations, while the smooth pursuit and 
saccadic systems help follow the movements of the visual 
target, or switch visual attention. Therefore, it was only 
natural for researchers to start looking at the coordination of 
these subsystems [18-22]. But these first studies were 
limited in many ways. First, they did not consider the 
oculomotor system as a multiple-input system when 
analyzing visual-vestibular interaction data [20]. Second, 
visual and vestibular inputs were correlated, which prevents 
correct identification of system parameters [8]. Third, the 
stimuli were seriously band-limited, which prevents 
unbiased and robust estimation of dynamic parameters [19, 
22-24]. Finally, the switching nature of the oculomotor 
system was ignored; oculomotor responses are nystagmic, 
i.e., they are either “fast” (fast phases) or “slow” (slow 
phases), with very distinct dynamics [24-26]. However, fast 
phases were most often discarded [1, 27]. To cope with 
switching, we recently introduced Hybrid Extended Least 
Squares (HybELS) for the identification of oculomotor 
responses [28]. We also introduced Generalized NonLinear 
HybELS (GNL-HybELS) for the simultaneous identification 
and classification of VOR responses [29]. In this work, we 
extend these methods to build a tool, for the first time, for 
the automatic classification and identification of oculomotor 
responses during sensory fusion. Currently, there is no other 
tool available that can perform even the classification task 
alone.  

Until now, it was believed that sensory fusion does not 
affect the dynamics of oculomotor subsystems [30], despite 
studies suggesting otherwise [31]. This means that the 
dynamics of oculomotor modalities should be the same with 
or without sensory fusion; only the gain might change from 
superposition effects [20]. We hypothesize that oculomotor 
subsystems have different dynamics when they are in 
coordination than when they work in isolation, due to 
changes in premotor circuitry – now testable using our GNL-
HybELS. This would have very important practical and 
clinical implications: it implies that testing subjects’ reflexes 
in the dark does not tell us about their daily functional limits, 
and that subjects should be tested in more natural contexts. 

II. GNL-HYBELS ALGORITHM 
All oculomotor responses (as in the VOR) are nystagmic, 

i.e., they switch between slow and fast modes. These modes 
are called slow and quick phases in the context of the VOR, 
and smooth pursuit and saccade in the context of visual 
target tracking. To analyze this type of data, we need to 
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separate the slow and fast phases (classification) and identify 
system dynamics in each phase or mode (identification). To 
do so, we extended GNL-HybELS [29] to multiple input 
cases. The extended method now identifies such a system for 
visual-vestibular interactions as shown in Fig. 1. 

 
Fig. 1. The structure identified by GNL-HybELS for visual –vestibular 
interactions. Shared LTI dynamics include the poles that are shared between 
the visual and vestibular paths. LTI dynamics 1 and 2 include zeros and 
poles of the vestibular and visual paths. 

Assuming a system structure as shown in Fig. 1, we can 
write the input-output equation of our multi-input hybrid 
(switching) system in mode mk in the z-domain as: 
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In [32] we showed that the discrete-time input-output 
equation for the jth data segment of length L in mode mk, in 
the noise-free case becomes:  
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where 

kmθ


 is the parameter vector corresponding to the mode 
mk. If we define our regressor vector ( )R n



 as 
( ) ( )1 1 2 2( ) ( ) ( 1) ( ) ( )u n u n r u n u n p y n y n q y n − − − −   

then the above equation implies that the data points for mode 
mk lie on a hyper-plane in 3r p q+ + + . We can repeat the same 
procedure and write equations (1) to (3) for other modes of 
the system as well. Therefore, in the case of the oculomotor 
system, where we have two modes m1 and m2 in the data 
record, the data points lie on either of the hyper-planes: 

1.( ) 0m
TR n θ =


  (4)   or   
2( ) . 0T

mR n θ =


  (5) 
We can solve for the classification (which data points belong 
to which hyperplane) and parameter vectors using 
Generalized Principal Component Analysis (GPCA) [33]. 
We can also search for possible input transport delays by 
searching for the ones that yield minimum root mean 
squared regression (rms) error. Once we have found the 
optimal delay values 1̂d

 
for the first input and 2d̂ for the 

second input, we replace ( )1u n  with ( )11
ˆu n d−  and ( )2u n  

with ( )22
ˆu n d−  for the rest of the analysis, and proceed with 

the canal time constant detection. Since the delay of the 
VOR is reported to be about 5-7 ms  [34], we constrain the 
search for the estimated delay of the vestibular path to the 
range of 0 to 20 ms, and constrain the delay of the visual 
path to 200 ms, as the reported expected value is 100-150ms 
[35]. After detecting the input delay, we search for the canal 
time constant by filtering the head input signal through a 
unity gain high pass filter with a variable time constant. We 
then compare the goodness of fit for different time constants 
of the high pass filter and select the time constant which 
results in the minimum fitting error. Once again, we replace 

( )u n  with 


( )( )*
TC

u h n  (the convolution of the input with 

the estimated canal impulse response function) for the rest of 
the analysis. Since the cupula time constant is about 5-7 s [8, 
36], and is reported to be 12-15 s [37] with velocity storage, 
we constrain the estimated time constant between 2 - 20 s. 

GPCA results can have large errors in the presence of 
noise and in higher dimensional cases. Thus, we fine-tune 
our classification and identification by minimizing the (1-
step) prediction errors iteratively. Note that in the presence 
of noise, considering an ARMAX (AutoRegressive Moving 
Average with eXogenous input) structure for the system, 
equation (2) changes to: 
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where z(n) is the observed noisy output and e(n) is the 
additive noise. The regressors also change in turn from 
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to  
( ) ( )1 1 2 2( ) ( ) ( 1) ( ) ( )u n u n r u n u n p z n z n q z n − − − −   

and equations (4)-(5) change to: 
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Equations (7)-(8) yield the output prediction errors. 
Therefore, estimating the parameter vectors 

1mθ


 and 
2mθ



 
translates into finding the parameter vectors that minimize 
prediction errors with the cost function: 
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where ( )nµ  is a membership function which assigns a mode 
to each data point:  
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Our goal is to find values of ( ) { }1 2,  ,m mnµ θ θ
   that minimize f. 

The membership function ( )nµ  would then represent the 

best classification of the data, while { }1 2 ,m mθ θ
 

 represent the 

identified parameters for the two modes of the system. The 
solution to this problem is given by 
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Identification step: The first solution (when ( )nµ  is known 

and we search for { }1 2 ,m mθ θ
 

) is given by Least Squares. 

However, for the hybrid case, some modifications need to be 
made, which give rise to Hybrid Least Squares. Hybrid Least 
Squares is in essence the same as HybELS [32], only 
without the iterations.  
Classification step: The second solution (now { }1 2 ,m mθ θ

   is 

known and we search for ( )nµ ) is achieved by assigning 
each data point to the mode that results in the smallest (1-
step) prediction error; in other words, ( )nµ  is 2 when the 

prediction error assuming 
2m , 

2) .( T
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. 
In summary, to minimize our cost function, we take the 

initial classification and parameters given by GPCA, and 
optimize them iteratively using equations (11) and (12).  

At every iteration, in order to avoid the biasing effects of 
outliers or artifacts, we take out the points with extreme 
residuals. However, each pass re-evaluates all prediction 
errors using all data producing a new associated set of 
outliers (they are not accumulated). 

Finally, with the classification vector fixed, HybELS [32] 
is used to fine-tune the estimated parameters. In the end, we 
discard the outliers again by removing the data points with 
extreme residuals, and re-estimate the parameters as above, 
to prevent the outliers from biasing our results. 

III. RESULTS 
We applied GNL-HybELS to simulated data with known 

classification and identification parameters, i.e., system 
dynamics and switching instances between fast and slow 
modes were known. In this case, we could validate the 
performance of our method in terms of both identification 

and classification. We chose the simulation parameters close 
to what we would expect to see in experimental settings. We 
first tested our method on noise-free simulated data, and 
then added Gaussian white noise with a standard deviation 
(STD) of 1 deg which is our expected experimental noise. 
The validation results indicated unbiased estimates of delays 
and vestibular time constant. On the other hand, 
classification errors changed from 0.38% to 4.4% of data 
points, comparing noise-free to noisy conditions, while 
dynamic estimates remained robust. (Bode plots, Fig. 2-3). 

IV. DISCUSSION AND FUTURE WORK 
In this work, we introduced GNL-HybELS as a tool for the 
simultaneous classification and identification of oculomotor 
responses. With these objective and automated analysis 
capabilities, clinical protocols can be significantly improved, 
to allow for more versatile stimuli. Since data can now be 
classified and identified without human intervention, the 
input signals need not be deterministic, and novel sensory 
profiles are now feasible despite apparently erratic responses 
to the human eye. Multiple oculomotor modalities can now 
be tested in a compact protocol, and there is no need for 
tedious isolated experiments. The results of such data 
analysis are expected to provide more robust information on 
functionality, as verified in our preliminary clinical tests 
[29]. GNL-HybELS can also be used to identify non-
linearities in the system structure. This could unveil 
significant diagnostic capabilities of GNL-HybELS in the 
context of the oculomotor system, as it did in the context of 
the VOR [29]. 

 
Fig. 2. GNL-HybELS results on noiseless simulated data, compared to the 
correct simulation parameters. Bode plots of the identified transfer 
functions (with 95% confidence intervals) in both slow and fast phases, as 
well as the correct transfer functions used in the simulation are shown. 
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Fig. 3. GNL-HybELS results on noisy simulated data, compared to the 
correct simulation parameters. Bode plots of the identified transfer 
functions (with 95% confidence intervals) in both slow and fast phases, as 
well as the correct transfer functions used in the simulation are shown. 
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