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Abstract—An interesting question has been raised recently 
regarding the relationship between the local field potentials 
(LFPs) and the single unit spiking activity. In this study, we 
investigate whether a linear modification of the LFPs, acquired 
from microelectrode recordings inside the subthalamic nucleus 
(STN) of Parkinson’s disease patients, can provide input to an 
appropriately parameterized Izhikevich model to predict the 
spikes of an STN neuron. We show that the model is able to 
predict both the exact timing and the rhythm of the recorded 
spikes with high accuracy in 5 out of 7 intranuclear single 
neuron recordings. For the rest of the models, one model shows 
a lower accuracy in predicting the rhythm and the second one 
shows a lower accuracy in predicting the timing of the spikes. 
Overall, the results dictate that the LFPs can reliably predict 
the occurrence of spikes.      

I. INTRODUCTION 

HE predictive relation between local field potentials 
(LFPs) and neuronal firing, per se, has been firstly 

examined in the primary visual cortical area (V1) using 
extracellular microelectrode recordings (MERs) in 
anesthetized monkeys [1]. A recent study in the primary 
somatosensory cortical area (S1) of rats using a combination 
of intracellular and extracellular recordings reveals an 
analogous interconnection between LFPs and the spikes [2]. 
In addition to proving that spikes can be predicted by the 
area’s LFP, research studies are also suggesting the opposite.  
A linear relationship is revealed that connects the spikes to 
the LFPs in the V1 of anesthetized monkeys [3]. With the 
use of recordings from the same electrode and nearby 
electrodes, it is proven that some of the local properties of 
the LFPs can be predicted by the spiking activity of a few or 
even a single neuron [3]. Until now, spikes have been 
inferred from LFPs in recordings acquired from the cortex of 
animals, mainly due to the accessibility of the area and the 
easiness of the surgical procedure. In addition, the highly 
organized topography of the cortex constitutes the LFPs to 
be regarded as the best indicators of integrative activity in a 
neural area. 

The relationship between LFP and spiking signals 
recorded in areas where neurons are positioned in a less 
ordered manner is more controversial. Almost no relation 
was found between the LFPs acquired from the dorsolateral 
area of the geniculate nucleus of monkeys and the spiking 
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activity inside that nucleus [1]. Contrarily to this finding, we 
provided evidence that the LFPs recorded inside the 
subthalamic nucleus (STN) of Parkinson’s disease (PD) 
patients undergoing deep brain stimulation (DBS) surgery, 
reflect synchronized aggregate activity. A nonlinear, 
Hammerstein-Wiener model was found to predict the 
spiking activity of the neural area near the microelectrode 
([4]-[6]). In addition, a mathematical model that is 
physiologically inspired by the temporal summation of 
action potentials (APs) observed in neurons, was also found 
to predict the spikes and the spiking rhythm in the same 
recordings [7]. 

This paper describes a modification of an Izhikevich 
model to receive the LFPs as its input. The model is then 
used, for the first time, to predict the spiking activity of 
single neuron recordings, acquired from the motor area of 
the STN of PD patients.  

II. PROCESSING AND ANALYSIS OF RAW SIGNALS 

A. Data Handling 

Raw data acquisition, processing and analysis are 
analytically described elsewhere ([4]-[7]). Briefly, 
electrophysiological data were recorded from three awake, 
un-medicated PD patients, during DBS operation.  
Recordings were acquired during spontaneous STN activity, 
prior to the implantation of the DBS lead using an array of 
five electrodes (“Ben Gun” formation).  Only single neuron 
signals acquired around the final stimulation point (+/- 
1mm) inside the STN were included in this study. Each 
recording, lasting 10 s, was digitized at 24 kHz and, after 
appropriate anti-alias filtering, downsampled to 12 kHz, for 
computational convenience. In total, 7 single neuron 
recordings were used in this study. Recordings were named 
as SX-DYZ‘sign’‘mm’, where X was the sequential number 
of each patient (X={1,2,3} in this study), Y was the identifier 
of the hemisphere (Y={7,8} for left and right, respectively), 
Z was the anatomical position of the recording electrode 
(Z={1,2,3,4,5} for central, medial, lateral, posterior, and 
anterior electrodes, respectively), ‘sign’ was a string named 
as {‘plus’,‘min’} for recording locations below or above the 
theoretical target, respectively and ‘mm’ was a number 
denoting the distance, in mm, between the recording location 
and the theoretical target. Models are named after the 
corresponding recordings. 

Off-line data processing and analysis were conducted by 
custom-made MATLab (The MathWorks, Natick, MA) 
code. An FIR equiripple low-pass (LP) filter of order of 
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2100 samples, with a pass-band of [0 100] Hz and a stop-
band of [0.15 12] kHz and p-p rippling in passband equal to 
2 x 10-6 db was used to acquire the LFP signal. To acquire 
the spike signal, we used an FIR generalized equiripple 
band-pass (BP) filter with stop-bands of [0 450] Hz and 
[2.55 6] kHz, a pass-band of [0.5 2.5] kHz, of the same order 
and p-p rippling equal to 2 x 10-6 db. Signals were visually 
inspected, and only epochs free from artifacts following the 
typical waveform of an STN glutamatergic projection 
neuron activity (low noise and high amplitude spikes) were 
used for the analysis.  

The brief duration of an AP (about 1 ms) was ignored. 
Hence, an AP sequence was characterized simply by a 
binary signal in which the ones represent the times when 
spikes occurred. 

B. The Izhikevich model neuron 

The Izhikevich model neuron was developed as an 
efficient, powerful alternative to the integrate and fire 
model. The model uses a variable representing voltage 
potential and a variable representing membrane which 
accounts for the activation of K+ ionic currents and 
inactivation of Na+ ionic currents. It is a spiking neuron and 
as such, a spike occurs when the voltage passes a threshold 
value. Then the voltage and recovery variable are reset. The 
differential equations that describe the model are: 

ݒ݀
ݐ݀

ൌ ଶݒ0.04 ൅ ݒ5 ൅ 140 െ ݑ ൅  ܫ
 

(1) 

ݑ݀
ݐ݀

ൌ ܽሺܾݒ െ  ሻݑ
 

(2) 

with the auxiliary after-spike resetting  
If ݒ ൒ ൅30	mV, then	ݒ ← ܿ	and	ݑ ← ݑ ൅ ݀. (3) 

In the above equations, ܽ, ܾ, ܿ, and	݀ are abstract 
parameters of the model discussed in [8], ݒ is the membrane 
voltage potential of the neuron, ݑ represents a membrane 
recovery variable providing negative feedback to ݒ. After 
the spike reaches its apex (+30 mV), the membrane voltage 
and the recovery variable are reset according to eq. (3). In 
the model, synaptic currents or injected dc-currents are 
delivered via the variable I. Firing patterns of all known 
types of neurons are simulated with an appropriate choice of 
the model’s parameters ܽ, ܾ, ܿ, and	݀, as presented in [8]. 

The main neurophysiological features of STN neurons are 
(i) a spontaneous spiking activity between 3 and 20 Hz; (ii) 
increased spiking activity in response to an excitatory input 
current; and (iii) a post-inhibitory rebound burst followed by 
a quiescence period, caused by the inactivation of the low-
threshold Ca2+ current [11]. The Izhikevich model can 
exhibit a discharge mode that matches an STN glutamatergic 
projection neuron if its parameter values are set as follows: 
ܽ ൌ 0.005, ܾ ൌ 0.265, ܿ ൌ െ65, ݀ ൌ 1.5 ([9], [10]). 

C. Linear transformation of the LFPs to current   

The Poisson’s equation for scalar potential,ߔሺ࢘,  ሻ, at aݐ
vector location,	࢘, in time, t, in a tissue mass is given by: 

,ሺ࢘ߔ׏ሺ࢘ሻߝሾ׏ ሻሿݐ ൌ െߩሺ࢘,  ሻ (4)ݐ
where ߩሺ࢘,  ሻ is the  free (conduction) charge density andݐ

 ሺ࢘ሻ is the permittivity of the dielectric medium (tissue). Ifߝ
we assume that the source region volume is much smaller 
than the distance to the microelectrode and that the 
extracellular fluid is an infinite, homogeneous, isotropic, and 
purely resistive volume conductor, the potential external to a 
source region becomes 

,ሺ࢘ߔ ሻݐ ൌ
1
ߪߨ4

ሻݐሺܫ
|࢘|

 
(5) 

where ܫሺݐሻ is the monopolar current source, ࢘ is the distance 
of the current source to the microelectrode, and σ is the 
macroscopic electrical conductivity of the tissue. Equation 
(5) may be derived with a simple application of Ohm’s law 
if we assume an imaginary surface of radius r surrounding 
the point source. Since total current is conserved, the current 
density at this surface must be (current)/(surface area), all in 
the radial direction. By substituting ߔሺ࢘,  ሻ with theݐ
recorded LFP, the current, I, injected into the Izhikevich 
model is described by the linear transformation 

ܫ ൌ ߢ ∙  (6) ܲܨܮ
where ߢ ൌ  In other words, we assume that the sum .|࢘|ߪߨ4
of the currents in the dendritic sites that results to the 
recorded LFP is directly proportional to the LFP. 

D. Validation methods 

In order to verify that the model accurately describes the 
structure observed in the raw data, we need to compare 
quantitatively the agreement between the spike train 
predicted from the LFPs and the spike train detected from 
the recordings. The first approach is to plot the empirical 
cumulative distribution function (CDF) of the detected 
spiking times against the CDF of the predicted spiking 
times. If the model accurately describes the observed spiking 
data, then the plot should follow a 45° line. If the model fails 
to account for some aspect of the spiking behavior, then that 
lack of fit will be reflected in the plot as a significant 
deviation from the 45° line.  

In addition, we quantify the similarity between the 
recorded and predicted spike trains using a smoothing 
process that transforms the binary signals into continuous 
ones. The two binary spike trains that represent the timing of 
the spikes, are convolved with a Gaussian function with 
standard deviation ߪො, which essentially determines the 
temporal resolution used in the comparison. A large value 
means low temporal resolution and vice versa. In this study, 
 ො varied between 0.5 ms and 6.7 ms. Cross-correlation orߪ
correlation coefficient, r, can then be calculated as a function 
of ߪො.  

In order to validate the model in terms of rhythm 
prediction, we calculated the number of spikes present in 
adjacent, non-overlapping bins. The bin width, for this 
study, was kept equal to 5 ms. Then, the mean squared error 
(MSE) between the predicted and recorded rhythm was 
estimated. 

III. RESULTS 

The spiking activity of a recorded STN neuron predicted by 
the Izhikevich model is shown in Fig. 1. Data (S3- 
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TABLE I 
MSE AS A FUNCTION OF K FOR DIFFERENT TYPES OF SPIKING NEURON 

MODELS (RECORDING S3-D75MIN15) 

Type of spiking neuron Rhythm MSE κ 

tonic spiking 0.91 6 
phasic spiking 1.05 5 
tonic bursting 1.26 3 
mixed mode 0.88 5 
spike frequency adaptation 1.08 9 
Class 1 excitable 0.99 10 
Class 2 excitable 0.96 1 
spike latency 0.91 6 
subthreshold oscillations 0.88 1 
resonator 0.80 1 
integrator 0.98 10 
rebound spike 1.13 3 
threshold variability 1.13 2 

IV. DISCUSSION 

It is well established that information is coded in the 
population activity of neurons, especially in sensory, motor 
and other higher cortical brain regions. Any neuron responds 
primarily to a combination of chemical and electrical 
signals, some of which are believed to influence (if not 
dominate) the LFP. Here we introduced a modification of an 
Izhikevich model that predicts the output temporal pattern of 
AP events as a function of an input electrophysiological 
pattern of LFPs for an STN neuron.  

However, the strengths of modeling are tempered by the 
necessary simplifications made in any reasonable model 
This approach is only valid for single neuron recordings. 
What is more, finding a single neuron recording acquired 
during the implantation procedure of a deep brain stimulator 
is a challenging task to achieve. Most of the recordings 
inside the STN are either noisy or the received spikes come 
from two or more neurons.  

Nonetheless, the model can expand to include more 
neurons randomly interconnected. This will allow research 
on the dynamics of an STN neuron network. In the future, 
such a model can become a test bed for the various proposed 
effects of DBS. This will enable the design of time-adaptive 
DBS stimulation that can be tailored to the needs of 
individual PD patients. Of course, to reach this goal and test 
the DBS effects on the firing activity, the model must be 
modified accordingly.   

V. CONCLUSION 

In this paper, we showed that the LFPs, recorded from an 
area inside the STN of PD patients, can be linearly 
transformed and then inserted into an Izhikevich model of an 
STN neuron to predict the timing and rhythm of a single 
neuron’s spikes. We tested the proposed modeling approach 
to 7 single neuron recordings acquired from 5 nuclei (3 
Subjects). Six out of the 7 models were able to predict very 
accurately the spiking rhythm calculated in 50 ms bins or the 
spike timing. Five out of 7 models predicted both the rhythm 
and the timing of the spikes with high accuracy.  Our 
proposed model allows for high level functional views that 

are still consistent with low level ideas of operation. Our 
approach can be used as the test bed for current and future 
theories on the STN and even shed some light on the effect 
that the DBS has on the STN function. 
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